• Title/Summary/Keyword: robust and neural control

Search Result 220, Processing Time 0.079 seconds

Adaptive PI Controller Design Based on CTRNN for Permanent Magnet Synchronous Motors (영구자석 동기모터를 위한 CTRNN모델 기반 적응형 PI 제어기 설계)

  • Kim, Il-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.635-641
    • /
    • 2016
  • In many industrial applications that use the electric motors robust controllers are needed. The method using a neural network in order to design a robust controller when a disturbance occurs is studied. Backpropagation algorithm, which is used in a conventional neural network controller is used in many areas, but when the number of neurons in the input layer, hidden layer and output layer of the neural network increases the processing speed of the learning process is slow. In this paper an adaptive PI(Proportional and Integral) controller based on CTRNN(Continuous Time Recurrent Neural Network) for permanent magnet synchronous motors is presented. By varying the load and the speed the validity of the proposed method is verified through simulation and experiments.

Backstepping Control-Based Precise Positioning Control Using Robust Friction State Observer and RFNN (강인한 마찰상태관측기와 RFNN을 이용한 백스테핑 제어기반 정밀 위치제어)

  • Yeo, Dae-Yeon;Han, Seong-Ik;Lee, Kwon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.394-401
    • /
    • 2010
  • In this article, we investigate a robust friction compensation scheme for the purpose of accomplishing precision positioning performance a servo mechanical system with nonlinear dynamic friction. To estimate the friction state and tackle robustness problem for uncertainty, a RFNN and reconstructed error compensator as well as a robust friction state observer are developed. The asymptotic stability of the series of friction compensation methodologies are verified from the Lyapunov's stability theory. Some simulations and experiments on a servo mechanical system were carried out to evaluate the effectiveness of the proposed control scheme.

Learning Framework for Robust Planning and Real-Time Execution Control

  • Wang, Gi-Nam;Yu, Gang
    • Management Science and Financial Engineering
    • /
    • v.8 no.1
    • /
    • pp.53-75
    • /
    • 2002
  • In this Paper, an attempt is made to establish a learning framework for robust planning and real-time execution control. Necessary definitions and concepts are clearly presented to describe real-time operational control in response to Plan disruptions. A general mathematical framework for disruption recovery is also laid out. Global disruption model is decomposed into suitable number of local disruption models. Execution Pattern is designed to capture local disruptions using decomposed-reverse neural mappings, and to further demonstrate how the decomposed-reverse mappings could be applied for solving disrubtion recovery problems. Two decomposed-reverse neural mappings, N-K-M and M-K-N are employed to produce transportation solutions in react-time. A potential extension is also discussed using the proposed mapping principle and other hybrid heuristics. Experimental results are provided to verify the proposed approach.

Position Control System using Neural Network Algorithm for Butterfly Valve (신경망 알고리즘을 이용한 버터플라이 밸브의 위치제어)

  • Choi, Jeong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.94-98
    • /
    • 2012
  • Butterfly valves are usually used by the plumbing systems in plant engineering field. Valves are used for controlling the flow rate and pressure of fluid. In order to control the flow rate using butterfly valve, the position control of valve disc should be designed. However, since there are lots of uncertain disturbance in plumbing system, the robust control system should be considered. Therefore, the sliding mode control system using neural network algorithm is proposed in this paper. The proposed control system provides the estimating method using neural network for the unmeasurable disturbance in the plumbing system. The performance of the proposed control system is evaluated through computer simulations.

Design of DNP Controller for Robust Control of Auto-Equipment Systems (자동화 설비시스템의 강인제어를 위한 DNP 제어기 설계)

  • 조현섭
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.55-62
    • /
    • 1999
  • In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. In this paper, to bring under robust ard accurate control of auto-equipnent systems which disturbance, parameter alteration of system, uncertainty ard so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the learning architecture to compute inverse kinematic coordinates transfonnations in the manirclator of auto-equipnent systems is developed ard the example that DNP can be used is explained The architocture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simllations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.he DNP.

  • PDF

A Study on Coagulant Feeding Control of the Water Treatment Plant Using Intelligent Algorithms (지능알고리즘에 의한 정수장 약품주입제어에 관한 연구)

  • 김용열;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • It is difficult to determine the feeding rate of coagulant in the water treatment plant, due to nonlinearity, multivariables and slow response characteristics etc. To deal with this difficulty, the genetic-fuzzy system genetic-equation system and the neural network system were used in determining the feeding rate of the coagulant. Fuzzy system and neural network system are excellently robust in multivariables and nonlinear problems. but fuzzy system is difficult to construct the fuzzy parameter such as the rule table and the membership function. Therefore we made the genetic-fuzzy system by the fusion of genetic algorithms and fuzzy system, and also made the feeding rate equation by genetic algorithms. To train fuzzy system, equation parameter and neural network system, the actual operation data of the water treatment plant was used. We determined optimized feeding rates of coagulant by the fuzzy system, the equation and the neural network and also compared them with the feeding rates of the actual operation data.

Direct Adaptive Control of Chaotic Systems Using a Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2187-2189
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of chaotic systems. The conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on a direct adaptive control method is proposed to control chaotic systems whose mathematical models are not available. The gradient-descent method is used for training a wavelet neural network controller. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic system.

  • PDF

Chaotic System Control Considering Edge of Chaos Using Neural Network

  • Obayashi, Masanao;Umesako, Kosuke;Nakayama, Daisuke
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.93.1-93
    • /
    • 2002
  • In this paper, an efficient robust control method for chaotic system introducing the concept, the edge of chaos (:boundary status between chaos and non-chaos), is proposed. To realize this concept, we introduce an extended performance index which consists of two parts. One is for achievement of the system's objects, another is for keeping the system edge of chaos. Parameters of the neural network controller are adjusted to minimize the value of the extended performance index and achieve the above two objects using Random...

  • PDF

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

A Comparison of Different Intelligent Control Techniques For a PM dc Motor

  • Amer S. I.;Salem M. M.
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents the application of a simple neuro-based speed control scheme of a permanent magnet (PM) dc motor. To validate its efficiency, the performance characteristics of the proposed simple neuro-based scheme are compared with those of a Neural Network controller and those of a Fuzzy Logic controller under different operating conditions. The comparative results show that the simple neuro-based speed control scheme is robust, accurate and insensitive to load disturbances.