• Title/Summary/Keyword: robust and neural control

Search Result 220, Processing Time 0.031 seconds

Robust nonlinear PLS based on neural networks (신경회로망에 근거한 강건한 비선형 PLS)

  • Yoo, Jun;Hong, Sun-Joo;Han, Jong-Hun;Jang, Geun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1553-1556
    • /
    • 1997
  • In the paper, we porpose a new mehtod of extending PLS(Partial Least Squares) regressiion method to nonlinear framework and apply it to the estimation of product compositions in high-purity distillation column. There have veen similar efforets to overcome drawbacks of PLS by using nonlinear-mapping ability of meural networks, however, they failed to show great improvement over PLS since they focused only in capturing nonlinear functional relationship between input data, not on nonlinear correlation inthe data set. By incorporating the structure of Robust Auto Associative Networks(RAAN) into that of previous nonlinear PLS, we can handle nonlinear correlation as well as nonlinear functional relationship. The application result shows that the proposed method performs better than previous ones even for nonlinearities caused by changing operating conditions, limited observations, and existence of meas-unrement noises.

  • PDF

Robust Speed Control of AC Permanent Magnet Synchronous Motor using RBF Neural Network (RBF 신경회로망을 이용한 교류 동기 모터의 강인 속도 제어)

  • 김은태;이성열
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.243-250
    • /
    • 2003
  • In this paper, the speed controller of permanent-magnet synchronous motor (PMSM) using the RBF neural (NN) disturbance observer is proposed. The suggested controller is designed using the input-output feedback linearization technique for the nominal model of PMSM and incorporates the RBF NN disturbance observer to compensate for the system uncertainties. Because the RBF NN disturbance observer which estimates the variation of a system parameter and a load torque is employed, the proposed algorithm is robust against the uncertainties of the system. Finally, the computer simulation is carried out to verify the effectiveness of the proposed method.

A Speed Control of Switched Reluctance Motor using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 스위치드 리럭턴스 전동기의 속도제어)

  • 박지호;김연충;원충연;김창림;최경호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.109-119
    • /
    • 1999
  • Switched Reluctance Motor(SRM) have been expanding gradually their awlications in the variable speed drives due to their relatively low cost, simple and robust structure, controllability and high efficiency. In this paper neural network theory is used to detemrine fuzzy-neural network controller's membership ftmctions and fuzzy rules. In addition neural network emulator is used to emulate forward dynamics of SRM and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. The backpropagated error of emulator offers the path which reforms the fuzzy-neural network controller's mmbership ftmctions and fuzzy rules. 32bit Digital Signal Processor(TMS320C31) was used to achieve the high speed control and to realize the fuzzy-neural control algorithm. Simulation and experimental results show that in the case of load variation the proposed control rrethcd was superior to a conventional rrethod in the respect of speed response.sponse.

  • PDF

An intelligent integrated control system for steering and traction of electric vehicles (전기자동차의 조향과 추진을 위한 지능형 통합 제어 시스템)

  • 서일홍;박명관
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.21-31
    • /
    • 1996
  • An intelligent integrated control system is designed for the active steering and the left/right traction force distribution control of electric vehicles, where input-output linearization is employed. Also, a fuzzy-rule-based cornering force estimator is suggested to avoid using an uncertain highly nonlinear expression, and a neural network compensator is additively utilized for the estimator to correctly find cornering forece. With these techniques, the proposed control system is shown by simulation results to be robust against drastic change of the external environments such as road conditions.

  • PDF

Study for Control Algorithm of Robust Multi-Robot in Dynamic Environment (동적인 환경에서 강인한 멀티로봇 제어 알고리즘 연구)

  • 홍성우;안두성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.249-254
    • /
    • 2001
  • Abstract In this paper, we propose a method of cooperative control based on artifical intelligent system in distributed autonomous robotic system. In general, multi-agent behavior algorithm is simple and effective for small number of robots. And multi-robot behavior control is a simple reactive navigation strategy by combining repulsion from obstacles with attraction to a goal. However when the number of robot goes on increasing, this becomes difficult to be realized because multi-robot behavior algorithm provide on multiple constraints and goals in mobile robot navigation problems. As the solution of above problem, we propose an architecture of fuzzy system for each multi-robot speed control and fuzzy-neural network for obstacle avoidance. Here, we propose an architecture of fuzzy system for each multi-robot speed control and fuzzy-neural network for their direction to avoid obstacle. Our focus is on system of cooperative autonomous robots in environment with obstacle. For simulation, we divide experiment into two method. One method is motor schema-based formation control in previous and the other method is proposed by this paper. Simulation results are given in an obstacle environment and in an dynamic environment.

  • PDF

High Performance Control of Induction Motor Drive using FNPPI Controller (FNPPI 제어기를 이용한 유도전동기 드라이브의 고성능 제어)

  • Lee, Jin-Kook;Ko, Jae-Sub;Kang, Seong-Jun;Jang, Mi-Geum;Kim, Soon-Young;Mun, Ju-Hui;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1097-1098
    • /
    • 2011
  • This paper proposes high performance control of induction motor drive using fuzzy neural network precompensation PI(FNPPI) controller. To apply industrial processes, control methods is requested technique that can be demonstrate high performance and robust about load disturbance, parameter variation and uncertainty of model, etc. The PI controller dose not show satisfactory performance due to fixed gain. Therefore, this paper proposes FNPPI which is adjusted input values of PI controller according to operating conditions of motor by FNN controller mixed neural network and fuzzy. And this paper proves validity of proposed control algorithm through result analysis.

  • PDF

Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller (자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어)

  • Jeong, Hyeong-Hwan;Kim, Sang-Hyo;Ju, Seok-Min;Heo, Dong-Ryeol;Lee, Gwon-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF

Color Object Recognition and Real-Time Tracking using Neural Networks

  • Choi, Dong-Sun;Lee, Min-Jung;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.135-135
    • /
    • 2001
  • In recent years there have been increasing interests in real-time object tracking with image information. Since image information is affected by illumination, this paper presents the real-time object tracking method based on neural networks that have robust characteristics under various illuminations. This paper proposes three steps to track the object and the fast tracking method. In the first step the object color is extracted using neural networks. In the second step we detect the object feature information based on invariant moment. Finally the object is tracked through a shape recognition using neural networks. To achieve the fast tracking performance, we have a global search for entire image and then have tracking the object through local search when the object is recognized.

  • PDF

Robust Adaptive Backstepping Control of Induction Motors Using Nonlinear Disturbance Observer (비선형 외란 관측기를 이용한 유도전동기의 강인 적응 백스테핑 제어)

  • Lee, Eun-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we propose a robust adaptive backstepping control of induction motors with uncertainties using nonlinear disturbance observer(NDO). The proposed NDO is applied to estimate the time-varying lumped uncertainty which are derived from unknown motor parameters and load torque, but NDO error does not converge to zero since the derivate of lumped uncertainty is not zero. Then the fuzzy neural network(FNN) is presented to estimate the NDO error such that the rotor speed to converge to a small neighborhood of the desired trajectory. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer. Simulation results are provided to verify the effectiveness of the proposed approach.

Complexity Control Method of Chaos Dynamics in Recurrent Neural Networks

  • Sakai, Masao;Homma, Noriyasu;Abe, Kenichi
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.124-129
    • /
    • 2002
  • This paper demonstrates that the largest Lyapunov exponent λ of recurrent neural networks can be controlled efficiently by a stochastic gradient method. An essential core of the proposed method is a novel stochastic approximate formulation of the Lyapunov exponent λ as a function of the network parameters such as connection weights and thresholds of neural activation functions. By a gradient method, a direct calculation to minimize a square error (λ - λ$\^$obj/)$^2$, where λ$\^$obj/ is a desired exponent value, needs gradients collection through time which are given by a recursive calculation from past to present values. The collection is computationally expensive and causes unstable control of the exponent for networks with chaotic dynamics because of chaotic instability. The stochastic formulation derived in this paper gives us an approximation of the gradients collection in a fashion without the recursive calculation. This approximation can realize not only a faster calculation of the gradient, but also stable control for chaotic dynamics. Due to the non-recursive calculation. without respect to the time evolutions, the running times of this approximation grow only about as N$^2$ compared to as N$\^$5/T that is of the direct calculation method. It is also shown by simulation studies that the approximation is a robust formulation for the network size and that proposed method can control the chaos dynamics in recurrent neural networks efficiently.