124 ICASE: The Institute of Control, Automation, and Systems Engineers, KOREA Vol. 4, No. 2, June, 2002

Complexity Control Method of Chaos Dynamics

in Recurrent Neural Networks
Masao Sakai, Noriyasu Homma, and Kenichi Abe

Abstract: This paper demonstrates that the largest Lyapunov exponent A of recurrent neural networks can be controlled efficiently by
a stochastic gradient method. An essential core of the proposed method is a novel stochastic approximate formulation of the Lyapunov
exponent A as a function of the network parameters such as connection weights and thresholds of neural activation functions. By a
gradient method, a direct calculation to minimize a square error (A — A°%7)2, where A\°* is a desired exponent value, needs gradients
collection through time which are given by a recursive calculation from past to present values. The collection is computationally
expensive and causes unstable control of the exponent for networks with chaotic dynamics because of chaotic instability. The stochastic
formulation derived in this paper gives us an approximation of the gradients collection in a fashion without the recursive calculation.
This approximation can realize not only a faster calculation of the gradient, but also stable control for chaotic dynamics. Due to
the non-recursive calculation, without respect to the time evolutions, the running times of this approximation grow only about as N2
compared to as N7 that is of the direct calculation method. It is also shown by simulation studies that the approximation is a robust
formulation for the network size and that proposed method can control the chaos dynamics in recurrent neural networks efficiently.

Keywords: recurrent neural networks, chaos, lyapunov exponent, stochastic analysis

I. Introduction

Recurrent neural networks, consisting of units connected
with each other, have a higher degree of the parameter freedom
compared with that of feedforward neural networks composed
of the same number of units. Harnessing the dynamics of com-
plicated interactions among the units, the recurrent networks
are expected to become a useful model for identifying and con-
trolling the nonlinear complex dynamical systems[1]. Most of
learning algorithms for the recurrent networks are based on the
algorithms for the feedforward networks. For example, Jor-
dan has proposed a new type of the recurrent networks which
can be learned by the well-known back-propagation algorithm
using the supervisory signals as the feedback signals[2]. In
this case, the Jordan’s recurrent networks can approximate the
input-output function of the target systems even if the functions
are nonlinear{3]. However there is no guarantee that a dynami-
cal complexity of the recurrent networks converges to the target
complexity[4],[5]. This means an actual behavior of the target
systems could be different from an estimated one which is em-
ulated by the recurrent networks with a conventional learning
method.

As pioneers, Principe and Kuo have proposed a dynamic
complexity learning method which updates the weights accord-
ing to a forgetting function given by the largest Lyapunov ex-
ponent for feedforward networks[6]. For recurrent networks
Deco and Schiirman have reported that the dynamical complex-
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ity can be learned by a stochastic “sample-by-sample” update of
the weights with the forgetting function[7]. These supervisory
learning methods, however, need to observe time series from
target systems as training data.

On the other hand, Homma et al. derived a direct control
method of the largest Lyapunov exponent[8]. The method min-
imizes a square error which can be given as a function of the
network parameters and time series of neurons’ state variables.
Then, the changes of parameters to minimize the square er-
ror are given by their gradients which are represented in terms
of the gradient collection of their state variables through time.
Therefore, the method doesn’t need the target time series explic-
itly. But it has several problems: it is computationally expensive
for large-scale recurrent neural networks and the control is un-
stable for recurrent networks with chaotic dynamics, because
a recursive calculation of the gradient collection might diverge
due to the chaotic instability.

Hirasawa et al. proposed a combination method where a
random optimization method is incorporated into a gradient
method[9]. This method can control the exponent without the
target time series and it also realizes chaotic dynamics, but it
is still computationally expensive more than that of the simple
gradient method due to the random optimization.

In this paper, we propose another method in order to reduce
the computational cost and realize a “‘stable” control for recur-
rent networks with chaotic dynamics. First, we derive a novel
stochastic relation between the dynamic complexity A and pa-
rameters of the network configuration under a restriction. The
new method is based on the stochastic relation that allows us
to approximate the gradient collection in a fashion without time
evolution. Simulation results show that this approximation is a
robust formulation for the network size and that the new method
can control the exponent stably for recurrent networks with
chaotic dynamics.
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II. Complexity of recurrent networks

A subset of the Lyapunov exponents is used as a measure of
the dynamic complexity. To calculate the Lyapunov exponents
of a time-discrete dynamic system in an N-dimensional phase
space, we monitor the long-term evolution of an infinitesimal
N-sphere of initial conditions; the sphere will become an N-
ellipsoid due to the locally deforming nature of the evolution.
Letting ¢ be discrete time, t = 1,2, . - -, the system is given by
the following difference equations.

z(t+1) = f(z@®), (1)
z(t) = [z1(t) z2(t) -~ :cN(t)]T , )
fz(t) = [f®)fa(@@) - in@E)]. 3)

Letting Df(x(¢)) be the Jacobi matrix at z(¢), the exponents
A; are then calculated by the Gram-Schmidt method as fol-
lows[10],]11].

T
A= %Z log [L'@)], i=1,2,---,n, @)
where, R
£ (1), (i=1),

Lit) = )= > (LH(1),6L7 (1)) L' (1), (5)

= (otherwise),
SL'(t) = L'®)/IL'®I, (6)
Lit+1) Df(x(t))§L(t), Q)
L) = [L')L*@) - L), ®)
L) = [Li®) Li@) - Lv@®)] . ©)

Here (A, B) is an inner product of A and B, and || L*(t + 1)||
denotes the ith longest length of the ellipsoidal principal axes
evolved from the past matrix, § L(t), where all the row vectors
are normalized and orthogonal each other. Letting the initial
matrix § L(0) be an unit matrix, the exponents \; can be calcu-
lated by using the Jacobi matrix Df(x(¢)).

The complexity is defined strictly by using the complete set
of the exponents. The calculation of the complete set is, how-
ever, computationally expensive. In the following, only the
largest Lyapunov exponent will be concerned since it can be
decided whether the systems are chaotic or not by using the
largest exponent: if a system is chaotic then the largest expo-
nent is greater than 0O, otherwise the exponent is less than 0.
Then the largest Lyapunov exponent A(= A1) is defined by

A = Tlggo—ZbgL(tH (10)
where L(t + 1) denotes || L* (¢ + 1)]..

Fully connected recurrent networks composed of N units are
considered. Activate functions of neurons are sigmoid. The

outputs of neurons z;,% = 1,2, - -, N are governed by the fol-
lowing difference equations
1
zi(t+1) = , an

1 + exp(—asi(t + 1))

N
sit+1) = Y wiyzi(t) + 6, (12)

where s; are inputs, w;; are connection strengths, ¢ is a gain
coefficient of the sigmoid functions and 6; are biases. In this
case, elements of the vector L* (¢ 4 1) are given by[4]

N
Li(t—i—l) = Xi(t+1)2wij5Lj(t), (13)

where X;(t) = z.(t) (1 —a5(t), Li(t + 1) = LIt + 1)
and 6L;(t) = OL}(t). This implies we can calculate the
largest Lyapunov exponent A using time series of the networks,
z(0),z(1), -, ®(T) and the weights w;;.

IL.  Control of the complexity

1. Gradient method

How do we set the Lyapunov exponent of the networks to
the desired value? As mentioned in Section II, the exponent
A is a function of the network parameters such as w;;. That
is, the question is equivalent to how we design the parameters
which generate dynamics with the desired exponent. One of
the methods to achieve this design is a gradient method. In the
following, the gradient method is described briefly.

Letting A°*? be the desired exponent, the change of parameter
dw;; is given by

(96>\
611)1'_7' = —anij7
A
— obj 4
nA =X g (14)

where ey = (X — A\°%7)? /2 is a squared error and 7 is a positive
coefficient. If the gradient X /Ow;; is obtained, the change of
parameter §w;; is able to be calculated.

The control method of A presented in [4] needs to calculate
9\ /Bw;; with a gradient collection through time. The number
of dominant multiplications using this collection given by a re-
cursive calculation grows about as N°T, that is O(N°T) run
time[8],{12]. Additionaily, it makes the control be unstable for
networks with chaotic dynamics[4].

2. Approximation method

To solve above problems, a qualitative method based on an
approximate relation between the complexity and a parame-
ter of the network configuration has been proposed[13]. The
method is as follows: At first we give a restriction with respect
to the network configuration which allows us to introduce a key
parameter 2. We initialize w;; randomly, then define the bi-
ases 6; by

—%Zwij, i=1,2,---N. (15)
J

By this restriction, the inputs are given by s; = Zj Si5, where
si; = wij(z; — 1/2). Supposing that z; and w;, are indepen-
dent of each other and that when networks dynamics are chaotic
the outputs x; are uniformly random numbers between 0 to 1
[13], and thus the probability density function is given as

N 11 (O S Zj S 1),
po(z;) = { 0, (otherwise). (16)
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Then the expectation and variance of s;; are given by

Elsi;] = Ewiy] Elz; —1/2],
= 0, (17
o*(sis) = E[w}]- Bl(z; —1/2),
oo 142
= E[wfj] / (333 ~3 po(z;) dxj,
1 1 2
= E[wfj] A (x.? - 5) dxj,
_ Efwj)
= TR (18)

where E[z] and o?(2) denote the expectation and variance of a
variable z, respectively. Here E[wfj] is equal to the average for
N being large enough, i.e, E[w?] = i w?; /N?. Therefore
by the law of large numbers, a variance o2 of the inputs s; is
calculated by[13]

o2

N- 02($ij)7
- 1 2
¥

From above arrangements, we have

o)) N 002
Owi; 82 Owij 20
8;/ Ow;; is calculated by (19) as
8a2 1
Bu, . GNV @b

/002 is calculated by a qualitative relation between A and
o2 as[13]

o { A1As exp(—Aqa?), (A< 0),

902 B, (A > 0).

(22)
The approximate gradient 9X/0ws;; is then calculated by (20)
~ (22) where Ay, A2, B1 are positive constants defined exper-
imentally by a parameter fitting method. The method is prac-
tical for large-scale networks since the method requires only
O(N 2) run time to control the exponent A [4],[8]. However the
method was based on experimental results rather than a theoret-
ical ground, thus the control isn’t always stable.
3. Stochastic analysis

In this paper we propose a new approximation method by
analyzing the relation stochastically. The main point of the fol-
lowing analysis is to approximate the collection through time of
the length log L(¢ + 1) in (10) by a fashion without time evolu-
tion since the collection through time for chaotic systems results
in computational divergence due to the chaotic instability. We
try to get the average length log L of the log L(t + 1) through
time. If log L is obtained, (10) is converted to the following:

A=logL. (23)

Our strategy to get log L is to calculate the expectation of

L;(t + 1) as a time-independent function of the parameter 2.
At first, for simplicity, suppose that all arguments of A such

as .'Ei(t), Wij and(SL]-(t), i,7=12,--- ,N,t =1,2,---,T

are independent of each other. For large-scale recurrent net-
works with the above supposition, log L(¢ + 1) in (10) can be
calculated by (13) and the law of large numbers as

log L(t+1) = Z(Li(t+ 1))2,
N ) 2

I

% {logN +log E [{Li(t + 1)}2] } ’

%{logN +loga’® +log E [{X«;(t + 1)}2]

+logE [{Zil wijéLj(t)}Q] } (24)

Letting w;; be an uniformly random number whose expected
value is zero, E[{ Zj\; wij0L; (t)}:)] is calculated by the
law of large numbers as

N 2 N
E {{Zj=1 wijéLj(t)} :| ~FE [Z]’.—:l {wijéLj(t)}le ,
~N-E[wj)] - E[{6L;(®)}*]. (25)
E [wfj] is calculated by (19) as
12—

Efwi] = ~ 7 (26)

E [{5Lj (t)}2] is calculated by the law of large numbers and
(6) as
1

E[{6L;®)}?] = ¥ (27

Here, if E [{Xi(t + 1)}2] is calculated as a time-independent
function, A is approximated by (23) ~ (27) as
PR -;- log (120°02E [{X:(t+ 1)}?]) . (28)

In the following, we try to calculate F [{Xz (t+ 1)}2] as a
time-independent function. The output x; of the sigmoid func-
tion in (11) can be represented by a power series as

1
T oTT exp(—as;)’
= > Fi(n)(as) (29)
n=0
exp(—as;) is also calculated by a power series as
exp (—as;) = Z ( k') (asi)®. 30)
k=0
ThenC1 + exp (—as;) is defined as
Lt+exp(-as;) = Y Gk)-(as)", 31)
k=0

(k=0),

2,
G(k —1)* 32
() { kl') , {otherwise). G2

Il

—
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From (29) and (31),
L= {i% ~ <asi>’“} : {i Fi(n)- <asi>“} ,
k=0 n=0
= i iG(k) ~Fi(n—k) - (—as:)™. (33)
Thus, o

i - Gk) -Fi(n—k) = {1’ (n=0),

0 otherwise).
e , (otherwise)

ThereforeCFy (0), Fi(1),- - -, Fi{n) are calculated by (32) and
(34) as follows.

Fi(0) = ﬁ
- % (35)
Bl = —gg 2 G Filn=k),
k=1
™ 1)k+1
:% (—%L~Fl(n——k), (n>1). (36)
k=1

From (29), (35) and (36), z{", m = 2,3, - - -, are given by

e =) Fnln)-(as)”, 37
Fu(n) = > Fi(k): Fao1(n—k). (38)

k=0

2
Thus {Xi (t+ 1)} can be approximated on a power series
representation as

My

S B - (as)™, (sl < /o),

n=0

{xt+1} =~ (39)

0, (otherwise),

H(n)

{Fz2(n) — 2F3(n) + Fs(n)}, (40)

where M, is a suitable natural number and € is a positive con-
stant. The probability density g(s:,0,c2) of the expectation
of the input s; can be given on a power series representation
as follows since the probability density is defined as a normal
distribution [13],{14]

g(s,‘,O,;z_) =

oo ()
Vargr T\ 207"
Mo n
S R (%)1/2 (;—;) (sl <8VaR),
n=0

(41)
0, (otherwise),
_ (="
= T o “

where M is a suitable natural number and [ is a positive con-
stant. Supposing M; = 2M> to avoid much more complicated
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Fig. 1. The Lyapunov exponent X as a function of the parameter
a?c? (N = 100).

representation, [{Xi(t + 1)}2] can be given on a power se-
ries representation as

_ 2\ "3
- % oo @ (2)
0<n< My o
0<k<n
—k [ 72 nts
+ Y QR (a%?) (:2> , 43
Ma+1sn<2My o

n=Mg<k< Mg

2. H(2k)- R(n — k)

Qn, k) = Gn+ 1) ) (44)
T = min ( €/a, ﬂ\/ﬁ) , (45)

where v is a positive constant. Finally from (28) and (43) we
get the expectation of A as a function of a?2.

Fig. 1 shows the approximate relation between A and %ol
In this case, the networks are composed of 100 neurons, a = 10
and T = 100. Note that our new approximation method can
predict the approximate relation between A and o?0? if %02
is not greater than 100 roughly. Here the constants were decided
experimentally such as My = 5, e = 2.4, 8 =2and v = 1.2.

Furthermore, Fig. 2 shows similar simulation results for var-
ious network sizes. Note that the approximate relation and suit-
able values of the constants such as M3, €, 3 and -y are indepen-
dent of the scale of the network, if the networks are composed
of large number of neurons enough to approximate a stochastic
relation.
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Fig. 2. The Lyapunov exponent X as functions of the parameter
o202 for various network sizes (N = 10, 20, 50, 100).
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4. Proposed complexity control method
From above results, &\ /80? is calculated by (28) as

o 1)1 1 OB [{Xi(t+1)}?]
802 2| a2 E[{Xi(t+1))7] 802 ’

(46)

where OF [{Xi(t—{— 1)}2] /8; can be calculated by (43).
Thus the partial differential coefficients OA/Bw;; without the
collection through time is calculated by substituting (46) and
(21) into (20). Note that this also needs only O(N?) run time
as same as the experimental approximation[8].

Iv. Simulation results

Our control methods have been tested on a design task which
requires the fully connected networks to have a desired value
of the largest Lyapunov exponent. In this task, the connec-
tion weights of the networks were initialized randomly, then
changed by our methods.

Fig. 3 shows the exponent A of the networks with 20 neu-
rons is controlled to the value of the chaotic dynamics by our
methods, where A% = 0.2 and the all other parameters, im-
plying @, T, Ma, €, 3 and v were same values as the above
simulation shown in Fig. 1. Dynamics of the networks after
100 iterations is shown in Fig. 4. Note that our new approxi-
mation method can control the exponent A to the desired value
and realize chaotic dynamics. On the other hand, the conven-
tional method fails to control the exponent A around A =~ 0

’< A, A
— A
g S ENTNIN N\ Ny
c
Q
% Desired value ( A% = 0.2 )
LI: 215+ 'I: — Approximation method
Qo W
g -2 1 4 === Conventional method
1
g 2.5
—

0 10 20 30 40 50 60 70 80 90 100
Iteration

Fig. 3. The exponent A as functions of the iteration by a con-
ventional method and the proposed one.

16

— Abproxi}nation method
14} - - - Conventional method

12}
10+

l(t)

0 10 20 30 40 50 60 70 80 90 100
!

Fig. 4. Dynamics of the networks trained by a conventional
method and the proposed one after 100 learning itera-
tions.

<27 I v
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2 L/ Mot = 0
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é o / Aobi =1 '
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[«

AU PSS S S R
2700 200 400 600 800 1000

[teration

Fig. 5. The exponent A as a function of the iteration by the
proposed method for various desired values (A\°% =
—1,0,0.5,1).

because of the chaotic instability. Then the network dynam-
ics become non-chaotic behavior such as a single point at-
tractor. In this case our new approximation method requires
only 0.02 seconds’ cpu-time to calculate the partial differen-
tial coefficients OA/Ow;; while the conventional one requires
692 seconds’ cpu-time. This implies the conventional method
isn’t practical for large-scale networks in comparison with our
new approximation method. Fig. 5 shows similar simulation
results by our new approximation method for large-scale net-
works. The networks were composed of 100 neurons and A%
€ {—1, 0, 0.5, 1}. Note that the exponent A converges to
desired values. In this case the cpu-time is 0.06 seconds. Ac-
cording to the experimental comparison, our new approxima-
tion method is practical for large-scale networks.

V. Conclusions

In this paper we analyzed a stochastic relation between the
largest Lyapunov exponent and network parameters for large-
scale fully connected recurrent networks with asymmetric con-
nection weights w;; and restricted biases 8; = —% Z]. Wij.
The stochastic relation allows us to get the gradient collection
through time in a fashion without time evolution.

Simulation results show that effectiveness of proposed
method with respect to the computational cost and the stable
control of the Lyapunov exponent of recurrent networks with
chaotic dynamics.
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