• Title/Summary/Keyword: robust and neural control

Search Result 220, Processing Time 0.021 seconds

Robust Control of AM1 Robot Using PSD Sensor and Back Propagation Algorithm (PSD 센서 및 Back Propagation 알고리즘을 이용한 AM1 로봇의 견질 제어)

  • Jung, Dong-Yean;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.167-172
    • /
    • 2004
  • Neural networks are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division (Corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Robust Control of Industrial Robot Based on Back Propagation Algorithm (Back Propagation 알고리즘을 이용한 산업용 로봇의 견실 제어)

  • 윤주식;이희섭;윤대식;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.253-257
    • /
    • 2004
  • Neural networks are works are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division(corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • 고종선;진달복;이태훈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.

The problem of stability and uniform sampling in the application of neural network to discrete-time dynamic systems

  • Eom, Tae-Dok;Kim, Sung-Woo;Park, kang-bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.119-122
    • /
    • 1995
  • Neural network has found wide applications in the system identification, modeling, and realization based on its function approximation capability. THe system governe dby nonlinear dynamics is hard to be identified by the neural network because there exist following difficulties. FIrst, the training samples obtained by the stae trajectory are apt to be nonuniform over the region of interest. Second, the system may becomje unstable while attempting to obtain the samples. This paper deals with these problems in discrete-time system and suggest effective solutions which provide stability and uniform sampliing by the virtue of robust control theory and heuristic algorithms.

  • PDF

Precision Speed Control of PMSM Using Neural Network Disturbance observer and Parameter compensation (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 속도제어)

  • Ko Jong-Sun;Lee Yong-Jae;Kim Kyu-Gyeom
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.389-392
    • /
    • 2001
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Precision Position Control of PMSM using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • Ko Jong-Sun;Kang Young-Jin;Lee Yong-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.49-52
    • /
    • 2002
  • This paper presents neural load torque observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Precision Position Control of PMSM using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • Ko J.S.;Lee T.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.393-397
    • /
    • 2003
  • This paper presents neural load torque observer tha used to deadbeat load torque observer and regulation of the compensation gun by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator li combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper

  • PDF

Controller Design using PreFilter Type Chaotic Neural Networks Compensator (Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 제어기 설계)

  • Choi, Un-Ha;Kim, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.651-653
    • /
    • 1998
  • This thesis propose the prefilter type control strategies using modified chaotic neural networks #or the trajectory control of robotic manipulator. Since the structure of chaotic neural networks and neurons, chaotic neural networks can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis PUMA robot is designed by CNN. The CNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on- line learning and the performance is excellent. The CNN controller have much better controllability and shorter calculation time compared to the RNN controller. Another advantage of the proposed controller could be attached to conventional robot controller without hardware changes.

  • PDF

Adaptive control based on nonlinear dynamical system

  • Sugisaka, Masanori;Eguchi, Katsumasa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.401-405
    • /
    • 1993
  • This paper presents a neuro adaptive control method for nonlinear dynamical systems based on artificial neural network systems. The proposed neuro adaptive controller consists of 3 layers artificial neural network system and parallel PD controller. At the early stage in learning or identification process of the system characteristics the PD controller works mainly in order to compensate for the inadequacy of the learning process and then gradually the neuro contrller begins to work instead of the PD controller after the learning process has proceeded. From the simulation studies the neuro adaptive controller is seen to be robust and works effectively for nonlinear dynamical systems from a practical applicational points of view.

  • PDF

Maximum Torque Control of Induction Motor Drive using FNN Controller (FNN 제어기를 이용한 유도전동기 드라이브의최대토크 제어)

  • Chung, Dong-Hwa;Kim, Jong-Gwan;Park, Gi-Tae;Cha, Young-Doo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.33-39
    • /
    • 2005
  • The maximum output torque and power developed by the machine is ultimately depended on the allowable inverter current rating and maximum voltage which the inverter can supply to the machine. Therefore, considering the limited voltage and current capacities, it is desirable to consider a control method which yields the best possible torque per ampere. In this paper, we propose fuzzy neural network(FNN) controller that combines a fuzzy control and the neural network for high performance control of induction motor drive. This controller composes antecedence of the fuzzy rules and consequence by a clustering method and a multi-layer neural networks. This controller is compounding of advantages that robust control of a fuzzy control and high-adaptive control of the neural networks. Also, this paper is proposed control of maximum torque per ampere(MTPA) of induction moor. This strategy is reposed which is simple in structure and has the honest goal of minimizing the stator current magnitude for given load torque. The performance of the proposed induction motor drive with maximum torque control using FNN controller is verified by analysis results at dynamic operation conditions.