• 제목/요약/키워드: robust actuator

검색결과 235건 처리시간 0.026초

다중 센스를 이용한 Kalman-Fuzzy 제어 (Kalman-Fuzzy Control Using Multi-Sensor)

  • 강성호;정성부;이현관;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.472-475
    • /
    • 2005
  • 본 논문에서는 다중센스 환경에서 센스정보를 Kalman-Fuzzy 시스템을 이용하여 정보를 통합하고 정확하게 프로세스의 상태를 예측하는 시스템을 제안한다. 제안한 방식은 Kalman 필터를 이용하여 보다 신뢰할 수 있는 센스정보를 획득하고, 다중센스로부터 정보를 퍼지 시스템을 이용하여 통합할 수 있다. 제안한 방식의 유용성을 확인하기 위하여 Electro-Hydraulic 엑추에이트를 대상으로 위치 추적을 시뮬레이션 하였고 제안한방식의 우수한 성능을 확인하였다.

  • PDF

DOB를 이용한 제철설비용 강인 서보 제어시스템 구현 (Design of the Robust Servo Control System for Steel Making Plant using Disturbance Observer Algorithm)

  • 김동삼;허윤제;정완균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.693-696
    • /
    • 2003
  • Among many servo control systems in steel making plant, AGC system in hot rolling mill is very important to get a accurate strip thickness for good quality. AGC (Auto Gauge Control) system controls the roll gap to maintain the required thickness by using the variation of roll force and the measure of output thickness. In this paper, a simulator of AGC system which unifies both hydraulic servo control system and AGC algorithm is suggested. After proving the concurrence of algorithms between the simulator and real system, main actuator system is added. Instead of usual PI system used in present system, DOB control scheme is applied and shows the effect of disturbance attenuation well.

  • PDF

신경회로망과 영상처리 및 CAN 통신기반의 동적 자세제어에 관한 연구 (The Study on Dynamic Position Control base on Neural Networks, Image Processing and CAN Communication)

  • 김관형;권오현;신동석;변기식
    • 한국정보통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.2499-2504
    • /
    • 2013
  • 동적인 자세제어에 대한 응용은 다양한 외란이 존재하는 비선형 플랜트에 발생한 외란을 제거하기 위한 모든 분야에 적용할 수 있다. 또한, 발생한 외란을 어떻게 계측하는가에 따라 제어 성능이 달라질 수 있다. 본 논문의 시스템의 구성은 CAN 통신을 기반으로 3개의 리니어 액추에이터(Linear Actuator)를 동적으로 제어하도록 하였으며, 플랜트의 외란은 수평 플랜트 위에 볼(ball)을 놓아 비선형적인 외란을 가하도록 하였다. 외란에 대한 계측은 영상처리(Image Processing)를 통하여 외란을 계측하여 플랜트를 제어하도록 하였다. 이러한 비선형적인 외란을 제거하기 위하여 본 논문에서는 비선형 시스템에 대하여 제어성능이 뛰어난 신경회로망(Neural Networks)을 활용하여 기존의 PI 제어를 보완하여 하여 더욱 강인한 제어성능을 제시하고자 한다.

사장교에서 다양한 불확실성에 대한 μ-제어기의 강인성 해석 (Robust Analysis of a μ-Controller for a Cable-Stayed Bridge with Various Uncertainties)

  • 박규식;;김춘호;이인원
    • 대한토목학회논문집
    • /
    • 제26권5A호
    • /
    • pp.849-859
    • /
    • 2006
  • 본 연구에서는 벤치마크 사장교를 이용해 다양한 불확실성에 대해서 복합시스템에 사용된 ${\mu}$-제어기의 강인성 해석을 수행하였다. 복합 시스템에 추가적으로 사용된 능동제어 장치로 인하여 전체 시스템의 강인성이 저하되거나 불안정성이 발생할 수 있다. 따라서 본 연구에서는 복합 시스템의 강인성을 향상 시키기 위해 기본적으로 신뢰성이 확보되는 수동장치와 함께 불확실성을 포함한 시스템의 성능과 안정성(강인성능)을 보장하는 ${\mu}$-합성법을 능동제어 장치에 사용하였다. 교량상판에 추가적인 질량, 구조물 강성행렬에 대한 섭동, 능동제어 장치의 시간지연, 그리고 이들의 조합을 이용하여 ${\mu}$-합성법의 강인성을 조사하였다. 수치해석 결과 다양한 불확실성에 대해 제안된 시스템은 제어성능의 저하 없이 뛰어난 강인성을 보여 주었다. 또한 제어시스템의 강인성은 다른 불확실성에 비해 구조물의 강성행렬 섭동에 더 큰 영향을 받는다. 따라서 ${\mu}$-합성법으로 제어되는 복합 시스템은 불확실성이 많은 지진하중을 받는 사장교에 개선된 제어기법으로 제안될 수 있다.

실용화를 고려한 Anti-Sway 시스템 구축: 카메라를 이용한 크레인 운동 계측 및 제어 (A Development of Anti-sway System for Real Application: Measurement and Control of Crane Motions Using Camera)

  • 카와이 히데키;김영복;최용운;양주호
    • 한국해양공학회지
    • /
    • 제22권4호
    • /
    • pp.90-96
    • /
    • 2008
  • In general, the swing motions of a crane are controlled and suppressed by controlling the trolley motion. In many of our previous studies, we suggested a new type of anti-sway control system for a crane. In this proposed control system, a small auxiliary mass (moving-mass) is installed on the spreader and moving this auxiliary mass controls tire swing motion. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. However, measuring systems based on a laser sensor or other means are not veryuseful in real-worldapplications. So, in this paper, animage sensor is used to measure the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method called Vector Code Correlation (VCC), which was devised to consider real environmental conditions. The H $\infty$ based control technique is applied to suppress the swing motion of the crane. Experimental results showed that the proposed measurement and control system based on an image sensor is useful and robust to disturbances.

지진하중을 받는 사장교를 위한 $\mu$-합성법을 이용한 복합시스템 (Hybrid System Controlled by a $\mu-Synthesis$ Method for a Seismically Excited Cable-Stayed Bridge)

  • 박규식;정형조;최강민;이종헌;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.574-577
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a $\mu-synthesis$ method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a $\mu-synthesis$ method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by a LQG algorithm. Furthermore, an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the performances of the proposed control system are superior to those of passive system and slightly better than those of active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a f-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

리니어모터 스테이지 편요오차 보상장치 제어 (Control for a Yaw Error Compensation System of Linear Motor Stage)

  • 이승현;강민식
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.997-1005
    • /
    • 2008
  • Linear motor stage is a useful device in precision engineering field because of its simple power transmission mechanism and accurate positioning. Even though linear motor stage shows fine positioning accuracy along travel axis, geometric dependent errors which relay on machining and assembling accuracy should be addressed to increase total positioning performances. In this paper, we suggests a cost effective yaw error compensation servo-system which is mounted on platform of the stage and nullify travel position dependent yaw error. This paper also provides a method of designing a sliding mode control which is robust to existing friction disturbance and model uncertainties. The reachability condition of slinding mode control for the yaw error compensating servo-system has been established. From some experimental results by using an experimental set-up, the sliding mode control showed its effective in disturbance rejection and its performance was superior to conventional linear controls.

최대 전력점 추종의 속응성을 고려한 무인 태양광 자동차 시스템 설계 (Design of the Unmanned Solar Vehicle with Quick Response of Maximum Power Point Tracking)

  • 신예슬;이교범;전용호;송봉섭
    • 전력전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.376-386
    • /
    • 2013
  • This paper proposes an improved Maximum Power Point Tracking method and design methods of unmanned solar vehicle system by parts of hardware, unmanned driving control and power conversion. The hardware design is offered on the weight reduction and structural reliability by using structural analysis software. The technique of curve fitting is applied to unmanned control system due to minimizing the vehicle's behavior. Furthermore, lateral controller applying actuator dynamics is robust enough to prevent performance degradation by measurement noise regarding position and heading angle. The power conversion system contains battery charger system and tapped-inductor boost converter. In the battery charger system, variable step-size MPPT is conducted for quick response of maximum power point tracking. The validity of the proposed algorithm are verified by simulations and experiments.

Robust Sliding Mode Controller Design for the Line-of-Sight Stabilization

  • Kim, Moon-Sik;Yun, Jung-Joo;Yoo, Gi-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.614-619
    • /
    • 2004
  • The line-of-sight (LOS) stabilization system is a precision electro-mechanical gimbals assembly for rejecting vibration to isolate the load from its environment and point toward the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. To generate movement commands for the actuators in the stabilization system, the control system uses a sensor of angular rotation. The controller is a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated using the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. And SMCPE (sliding mode control with perturbation estimation) is used to control the gimbals. SMCPE provides robustness of the control against the modeling deficiencies and unknown disturbances. In order to compare the performance of SMCPE with the classical SMC, a sample test result is presented.

  • PDF

Development, implementation and verification of a user configurable platform for real-time hybrid simulation

  • Ashasi-Sorkhabi, Ali;Mercan, Oya
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1151-1172
    • /
    • 2014
  • This paper presents a user programmable computational/control platform developed to conduct real-time hybrid simulation (RTHS). The architecture of this platform is based on the integration of a real-time controller and a field programmable gate array (FPGA).This not only enables the user to apply user-defined control laws to control the experimental substructures, but also provides ample computational resources to run the integration algorithm and analytical substructure state determination in real-time. In this platform the need for SCRAMNet as the communication device between real-time and servo-control workstations has been eliminated which was a critical component in several former RTHS platforms. The accuracy of the servo-hydraulic actuator displacement control, where the control tasks get executed on the FPGA was verified using single-degree-of-freedom (SDOF) and 2 degrees-of-freedom (2DOF) experimental substructures. Finally, the functionality of the proposed system as a robust and reliable RTHS platform for performance evaluation of structural systems was validated by conducting real-time hybrid simulation of a three story nonlinear structure with SDOF and 2DOF experimental substructures. Also, tracking indicators were employed to assess the accuracy of the results.