DOI QR코드

DOI QR Code

Robust Analysis of a μ-Controller for a Cable-Stayed Bridge with Various Uncertainties

사장교에서 다양한 불확실성에 대한 μ-제어기의 강인성 해석

  • Park, Kyu Sik (Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign) ;
  • Spencer, B.F.Jr. (Nathan M. and Anne M. Newmark Endowed Chair of Civil Engineering, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign) ;
  • Kim, Chun Ho ;
  • Lee, In Won
  • Received : 2006.01.11
  • Accepted : 2006.06.26
  • Published : 2006.09.30

Abstract

This paper presents an extensive robust analysis of a ${\mu}$-controller in the hybrid system for various uncertainties using the benchmark cable-stayed bridge. The overall system robustness may be deteriorated by introducing active devices and the active controller may cause instability due to small margins. Therefore, a ${\mu}$-synthesis method that simultaneously guarantees the performance and stability of the closed-loop system (robust performance) with uncertainties is used for active devices to enhance the robustness in company with the inherent reliability of passive devices. The robustness of the ${\mu}$-synthesis method is investigated with respect to the additional mass on the deck, structural stiffness matrix perturbation, time delay of actuator, and combinations thereof. Numerical simulation results show that the proposed control system has the good robustness without loss of control performances with respect to various uncertainties under earthquakes considered in this study. Furthermore, the control system robustness is more affected by the perturbation of structural stiffness matrix than others considered in this study. Therefore, the hybrid system controlled by a ${\mu}$-synthesis method could be proposed as an improved control strategy for a seismically excited cable-stayed bridge containing many uncertainties.

본 연구에서는 벤치마크 사장교를 이용해 다양한 불확실성에 대해서 복합시스템에 사용된 ${\mu}$-제어기의 강인성 해석을 수행하였다. 복합 시스템에 추가적으로 사용된 능동제어 장치로 인하여 전체 시스템의 강인성이 저하되거나 불안정성이 발생할 수 있다. 따라서 본 연구에서는 복합 시스템의 강인성을 향상 시키기 위해 기본적으로 신뢰성이 확보되는 수동장치와 함께 불확실성을 포함한 시스템의 성능과 안정성(강인성능)을 보장하는 ${\mu}$-합성법을 능동제어 장치에 사용하였다. 교량상판에 추가적인 질량, 구조물 강성행렬에 대한 섭동, 능동제어 장치의 시간지연, 그리고 이들의 조합을 이용하여 ${\mu}$-합성법의 강인성을 조사하였다. 수치해석 결과 다양한 불확실성에 대해 제안된 시스템은 제어성능의 저하 없이 뛰어난 강인성을 보여 주었다. 또한 제어시스템의 강인성은 다른 불확실성에 비해 구조물의 강성행렬 섭동에 더 큰 영향을 받는다. 따라서 ${\mu}$-합성법으로 제어되는 복합 시스템은 불확실성이 많은 지진하중을 받는 사장교에 개선된 제어기법으로 제안될 수 있다.

Keywords

References

  1. 박규식, 정형조, 이종헌, 이인원(2002) 지진하중을 받는 벤치마크 사장교를 위한 복합제어 시스템. 대한토목학회 논문집, 대한토목학회, 제22권 제3-A호, pp. 573-585
  2. 박규식, 정형조, Spencer, Jr., B.F., 이인원(2003) 수동, 능동, 반능동 및 복합시스템을 이용한 사장교의 지진응답 제어. 한국지진공학회 논문집, 한국지진공학회, 제7권 제1호, pp. 17-29
  3. 정형조, 박규식, Spencer, Jr., B.F., 이인원(2004) 사장교를 위한 LRB-기반 복합 기초격리 시스템. 한국지진공학회 논문집, 한국지진공학회, 제8권 제3호, pp. 63-75
  4. $ABAQUS^{(R)}$. (1996) User's Manual, Hibbitt, Karlsson & Sorensen, Inc.
  5. Ali, H.M. and Abdel-Ghaffar, A.M. (1995) Seismic passive control of cable-stayed bridge. Shock and Vibration, Vol. 2, No. 4, pp. 259-272 https://doi.org/10.1155/1995/918721
  6. Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and Smith, R. (1998) ${\mu}$-analysis and synthesis toolbox, The Math Works, Inc., Natick Massachusetts
  7. Burl, J.B. (1999) Linear optimal control: $H_{2}$ and H ${\infty}$ methods, Addison-Wesley
  8. Caicedo, J.M., Dyke, S.J., Moon, S.J., Bergman, L.A., Turan, G., and Hague, S. (2003) Phase II benchmark control problem for seismic response of cable-stayed bridges. Journal of Structural Control, Vol. 10, No. 3-4, pp. 137-168 https://doi.org/10.1002/stc.23
  9. Clough R.W. and Penzien J. (1995) Dynamics of structures, McGraw-Hill Inc.
  10. Dyke, S.J. (2003) Cable-stayed bridge seismic benchmark control problem. Journal of Structural Control, Vol. 10, No. 3-4
  11. Dyke, S.J., Caicedo, J.M., Turan, G., Bergman, L.A., and Hague, S. (2003) Phase I benchmark control problem for seismic response of cable-stayed bridges. Journal of Structural Engineering, ASCE, Vol. 129, No. 7, pp. 857-872 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(857)
  12. $MATLAB^{(R)}$. (1997) User's Manual, The Math Works, Inc.
  13. Moon, S.J., Bergman, L.A., and Voulgaris, P.G. (2003) Sliding mode control of cable-stayed bridge subjected to seismic excitation. Journal of Engineering Mechanics, ASCE, Vol. 129, No. 1, pp. 71-78 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:1(71)
  14. Nishimura, H., Nomami, K., and Nakada, O. (1994) $H{\infty}$ control with pole assignment for building-like structure by using active vibration absorber. Proceedings of the First World Conference on Structural Control, TA-4, pp. 73-82
  15. Nishitani, A. and Yamada, N. (1994) H. structural response control with reduced-order controller. Proceedings of the First World Conference on Structural Control, TA-4, pp. 100-109
  16. Park, K.S., Jung, H.J., and Lee, I.W. (2002) Hybrid control strategies for seismic protection of benchmark cable-stayed bridges. Proceedings of the Seventh U.S. National Conference on Earthquake Engineering, CD-ROM
  17. Park, K.S., Jung, H.J., Park, J.G., and Lee, I.W. (2003) Integrated passive-active system for seismic protection of a cable-stayed bridge. Journal of Earthquake Engineering, Vol. 7, No. 4, pp. 615-633 https://doi.org/10.1142/S1363246903001371
  18. Park, K.S., Jung, H.J., Yoon, W.H., and Lee, I.W. (2005) Robust hybrid isolation system for a seismically excited cable-stayed bridge. Journal of Earthquake Engineering, Vol. 9, No. 4, pp. 497-524 https://doi.org/10.1142/S1363246905002043
  19. Schmitendorf, W.E., Jabbari, F., and Yang, J.N. (1994a) Robust control techniques for buildings under earthquake excitation. Earthquake Engineering and Structural Dynamics, Vol. 23, pp. 539-552 https://doi.org/10.1002/eqe.4290230506
  20. Schmitendorf, W.E., Kore, I.E., Jabbari, F., and Yang, J.N. (1994b) $H{\infty}$ control of seismic-excited buildings using direct output feedback. Proceedings of the First World Conference on Structural Control, TA-1, pp. 11-20
  21. Schmitendorf, W.E., Marti, S. Jabbari, F., and Yang, J.N. (1994c) Active control of seismic-excited buildings with model uncertainty. Proceedings of the Fifth U.S. National Conference on Earthquake Engineering, pp. 951-959
  22. Smith, J.P., Burdisso, R., and Suarez, L.E. (1994) An experimental investigation of adaptive control of secondary systems. Proceedings of the First World Conference on Structural Control, TA-4, pp. 13-22
  23. Smith, J.P. and Chase, J.G. (1994) Robust disturbance rejection using $H{\infty}$. control for civil structures. Proceedings of the First World Conference on Structural Control, TA-4, pp. 33-42
  24. Suhardjo, J. (1990) Frequency domain techniques for control of civil engineering structures with some robustness considerations, PhD dissertation, Department of Civil Engineering, University of Notre Dame, Notre Dame, Ind.
  25. Turran, G. (2001) Active control of a cable-stayed bridge against earthquake excitation, PhD dissertation, Department of Civil Engineering, University of Illinois at Urbana-Champaign
  26. UBC. (1991) Uniform Building Code. International Conference on Building Officials
  27. Wilson, J. and Gravelle, W. (1991) Modeling of a cable-stayed bridge for dynamic analysis. Earthquake Engineering and Structural Dynamics, Vol. 20, pp. 707-721 https://doi.org/10.1002/eqe.4290200802
  28. Yoshida, K., Kang, S., and Kim, T. (1994) LQG control and $H{\infty}$ control of vibration isolation for multi-degree-of-freedom systems. Proceedings of the First World Conference on Structural Control, TA-4, pp. 43-52