• Title/Summary/Keyword: robust H$_2$filter

Search Result 27, Processing Time 0.028 seconds

State Feedback Control of Two-Mass Resonant System using $H_{\infty}$ Filter ($H_{\infty}$ 필터를 이용한 2관성 공진계의 상태궤환제어)

  • 김진수;김현중;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.332-335
    • /
    • 1997
  • In the industrial motor drive system, a shift torsional vibration si often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of such a system. In this paper, the state feedback controller of the two-mass resonant system using the H$\infty$ filter is proposed. The H$\infty$ filter is robust in noise and disturbance. Simulation results show the validity proposed controller.

  • PDF

Design of Decentralized $H^\infty$ Filter using the Generalization of $H^\infty$ Filter in Indefinite Inner Product Spaces (부정 내적 공간에서의$H^\infty$ 필터의 일반화를 통한 분산 $H^\infty$ 필터의 설계)

  • Kim, Gyeong-Geun;Jin, Seung-Hui;Yun, Tae-Seong;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.735-746
    • /
    • 1999
  • We design the robust and inherently fault tolerant decetralized$$H^infty$$ filter for the multisensor state estimation problem when there are insufficient priori informations on the statistical properties of external disturbances. For developing the proposed algorithm, an alternative form of suboptimal$$H^infty$$ filter equations are formulated by applying an alternative form of Kalman filter equations to the indefinite inner product space state model of suboptimal$$H^infty$$ filtering problems. The decentralized$$H^infty$$ filter that consists of local and central fusion filters can be designed effciently using the proposed alternative$$H^infty$$ filiter gain equations. The proposed decentralized$$H^infty$$ filter is robust against un-known external disturbances since it bounds the maximum energy gain from the external disturbances to the estimation errors under the prescribed level$$r^2$$ in both local and central fusion filters and is also fault tolerant due to its inherent redundancy. In addition, the central fusion equations between the global and local data can reduce the unnecessary calculation burden effectively. Computer simulations are made to ceritfy the robustness and fault tolerance of the proposed algorithm.

  • PDF

Robust H(sup)$\infty$ FIR Sampled-Data Filtering for Uncertain Time-Varying Systems with Lipschitz Nonlinearity

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.255-261
    • /
    • 2000
  • This paper presents the results of the robust H(sub)$\infty$ FIR filtering for a class of nonlinear continuous time-varying systems subject to real norm-bounded parameter uncertainty and know Lipschitz nonlinearity under sampled measurements. We address the problem of designing filters, using sampled measurements, which guarantee a prescribed H(sub)$\infty$ performance in continuous time-varying context, irrespective of the parameter uncertainty and unknown initial states. The infinite horizon causal H(sub)$\infty$FIR filter are investigated using the finite moving horizon in terms of two Riccati equations with finite discrete jumps.

  • PDF

Robust $L_2-L_{\infty}$ Filter Design for Uncertain Time-Delay Systems via a Parameter-Dependent Lyapunov Function Approach (파라미터에 종속적인 리아푸노프 함수 기법에 의한 불확실 시간지연 시스템을 위한 강인한 $L_2-L_{\infty}$ 필터 설계)

  • Choi, Hyoun-Chul;Jung, Jin-Woo;Shim, Hyung-Bo;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.177-178
    • /
    • 2008
  • An LMI-based method for robust $L_2-L_{\infty}$ filter design is proposed for poly topic uncertain time-delay systems. By using the Projection Lemma and a suitable linearizing transformation, a strict LMI condition for $L_2-L_{\infty}$ filter design is obtained, which does not involve any iterations for design-parameter search, any couplings between the Lyapunov and system matrices, nor any system-dependent filter parameterization. Therefore, the proposed condition enables one to easily adopt, with help of efficient numerical solvers, a parameter-dependent Lyapunov function approach for reducing conservatism, and to design both robust and parameter-dependent filters for uncertain and parameter-dependent time-delay systems, respectively.

  • PDF

Design of In-Motion Alignment System of SDINS using Robust EKF

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.177.3-177
    • /
    • 2001
  • In this paper, the design of the in-motion alignment system of Strapdown Inertial Navigation System(SDINS) using Robust Extended Kalman Filter(REKF) is presented. The compensation of errors in the aided navigation system is accomplished by the indirect feedback filtering. The performance of the aided navigation algorithm is very sensitive to the accuracy of the initial estimate, which is the characteristic of the EKF. Unfortunately, the initial attitude error can be very large during the in-motion alignment. To overcome the in-motion alignment under large initial attitude error problem, the REKF using linear robust filtering technique is proposed. The linear robust H$_2$ filter can be adopted for nonlinear ...

  • PDF

Mixed $H_2/H_{\infty}$ Output Feedback Controller Design for PLL Loop Filter with Uncertainties and Time-delay (시간지연과 불확실성을 가지는 위상동기루프의 루프필터에 대한 혼합 $H_2/H_{\infty}$ 출력궤환 제어기 설계)

  • 이경호;한정엽;박홍배
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2589-2592
    • /
    • 2003
  • In this paper, a robust mixed H$_2$/H$\_$$\infty$/ output feedback control method is applied to the design of loop filter for PLL carrier phase tracking. The proposed method successfully copes with large S-curve slope uncertainty and a significant decision delay in the closed-loop that may exist In modern receivers due to a convolutional decoder or an equalizer. The objective is to design an output feedback controller which minimizes the H$_2$performance while satisfying the H$\_$$\infty$/ performance to guarantee the gain margin and phase margin for linear time invariant(LTI) polytopic uncertain systems. LMIs based approach is given to solve this problem. We can verify the H$\_$$\infty$/ performance satisfaction and minimize the phase detector error through the simulation result.

  • PDF

Robust Control of Flexible Structure Using Dynamic Vibration Absorber (동흡진기를 이용한 유연 구조물의 강건제어)

  • Sim Sangdeok;Kang Hoshik;Jong Namheui;Jang Kangseok;Kim Doohoon;Song Ohseop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1093-1101
    • /
    • 2005
  • Hybrid mass damper systems have recently been introduced as a dynamic vibration absorber to exploit the benefits of both the conventional tuned mass damper system and the active control system. A hybrid system is programmed to function as either a conventional TMD or as an active system according to the wind conditions and the resultant building and damper mass vibration characteristics. This paper deals with the design of the robust controller for the control of the flexible box structure. The control algorithm was devised based on $H_2$(LQG) robust control logic with acceleration feedback and to improve the capability of the controller Kalman Filter was accepted for the system. To test the ability of the robust controller using the linear motor damper system, performance tests and simulations were carried out on the full-scale steel frame structure. Through the performance tests, it was confirmed that acceleration levels are reduced down.

Robust Filter Based Wind Velocity Estimation Method for Unpowered Air Vehicle Without Air Speed Sensor (대기 속도 센서가 없는 무추력 항공기의 강인 필터 기반의 바람 속도 추정 기법)

  • Park, Yong-gonjong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • In this paper, a robust filter based wind velocity estimation algorithm without an air velocity sensor in an air vehicle is presented. The wind velocity is useful information for the air vehicle to perform precise guidance and control. In general, the wind velocity can be obtained by subtracting an air velocity which is obtained by an air velocity sensor such as a pitot-tube, and a ground velocity which is obtained by a navigation equipment. However, in order to simplify the configuration of the air vehicle, the wind estimation algorithm is necessary because the wind velocity can not be directly obtained if the air velocity measurement sensor is not used. At this time, the aerodynamic coefficient of the air vehicle changes due to the turbulence, which causes the uncertainty of the system model of the filter, and the wind estimation performance deteriorates. Therefore, in this study, we propose a wind estimation method using $H{\infty}$ filter to ensure robustness against aerodynamic coefficient uncertainty, and we confirmed through simulation that the proposed method improves the performance in the uncertainty of aerodynamic coefficient.

Rotation-Invariant Fingerprint Identification System for Security Verification (안전 검증을 위한 회전 불변 지문인식 시스템)

  • Lee, S.H.;Ryu, D.H.;Park, M.S.;Ryu, C.S.
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.192-199
    • /
    • 1999
  • We propose a rotation invariant fingerprint identification system based on the circular harmonic filter(CHF) and binary phase extraction joint transform correlator(BPEJTC) for validation and security verification. It is shown that this system has the shift and rotation robust properties and can recognize the fingerprint in real-time. The complex circular harmonic filter, which is used to obtain the rotation invariance, is converted into the real-valued filter for real-time implementation. Experimental results show that this system has a good performance in the rotated fingerprints.

  • PDF

Two-Degree-of-Freedom Control of Two-Mass Resonant System using $H_{\infty}$ Filer ($H_{\infty}$필터를 이용한 2관성 공진계의 2자유도제어)

  • Kim, Jin-Soo;Kang, Seok-Jin;Shin, Jae-Hwa;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.515-517
    • /
    • 1997
  • In the industrial motor drive system, a shaft torsional vibration is often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of such a system. In this paper, two-degree-of-freedom(TDOF) control of the two-mass resonant system using the $H_{\infty}$ filter is proposed. TDOF control method satisfies the command following property and the internal stability at the same. The $H_{\infty}$ filter is robust in noise and disturbance. Simulation results show the validity of the proposed control method.

  • PDF