• Title/Summary/Keyword: robotic welding

Search Result 80, Processing Time 0.025 seconds

Environment Modeling for Autonomous Welding Robotus

  • Kim, Min-Y.;Cho, Hyung-Suk;Kim, Jae-Hoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.124-132
    • /
    • 2001
  • Autonomous of welding process in shipyard is ultimately necessary., since welding site is spatially enclosed by floors and girders, and therefore welding operators are exposed to hostile working conditions. To solve this problem, a welding robot that can navigate autonomously within the enclosure needs to be developed. To achieve the welding ra나, the robotic welding systems needs a sensor system for the recognition of the working environments and the weld seam tracking, and a specially designed environment recognition strategy. In this paper, a three-dimensional laser vision system is developed based on the optical triangulation technology in order to provide robots with work environmental map. At the same time a strategy for environment recognition for welding mobile robot is proposed in order to recognize the work environment efficiently. The design of the sensor system, the algorithm for sensing the structured environment, and the recognition strategy and tactics for sensing the work environment are described and dis-cussed in detail.

  • PDF

A Study on High Speed Laser Welding by using Scanner and Industrial Robot (스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Kim, Jong-Su;Kim, Jeng-O;Cho, Taik-Dong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF

PWSCC and System Engineering Development of Internal Inspection and Maintenance Methodology for RCS

  • Abdallah, Khaled Atya Ahmed;Mesquita, Patricia Alves Franca de;Yusoff, Norashila;Nam, GungIhn;Jung, JaeCheon;Lee, YoungKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.89-103
    • /
    • 2016
  • Due to safety of the plant, it became very clear the importance of study occurrence reactor coolant system (RCS) issues specially the primary water stress corrosion cracking (PWSCC). The Systems Engineering (SE) approach is characterized by the application of a structured engineering methodology for the design of a complex system or component. Robotic devices have been used for internal inspection, maintenance and performing remote welding and inspection in high-radiation areas. In this paper, PWSCC overview and inlay and over lay welding methodology introduced, concept of robotic device that can be inserted into the piping via Steam Generator (SG) main way to access to primary piping of pressurized water reactor (PWR) is developed based on SE methodology. A 3D model of the inspection system was developed along with the APR1400 (Advanced Power Reactor)reactor coolant systems (RCS) and internals with virtual 3D simulation of the operation for visualization to prove the validity of the concept.

APPLYING LASER-ARC HYBRID WELDING TECHNOLOGY FOR LAND PIPELINES

  • Booth, G-S;Howse, D-S;Woloszyn, A-C;Howard, R-D
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.169-175
    • /
    • 2002
  • World demand for natural gas has generated the need for many new land transmission pipelines to be installed in the next decade or so. Although mechanized gas metal arc welding is well developed, there are opportunities for cost savings by using alternative welding processes. Hybrid Nd:YAG laser - gas metal arc welding enables fibre optic delivery of the laser energy to a robotic welding head to be combined with the addition of extra energy and a consumable to produce good quality, deep penetration welds in a single pass. The present paper describes initial procedure development to optimize the laser and gas metal arc welding parameters for making joints in pipeline steel. Satisfactory joint quality was obtained and it is intended to develop the process to prototype field trials.

  • PDF

A New Algorithm for Predicting Process Variables on Welding Bead Geometry for Robotic Arc welding (로봇 아아크 용접에서 비드 형상에 공정변수들을 예측하기 위한 새로운 알고리즘)

  • 김일수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.36-41
    • /
    • 1997
  • With the trend towards welding automation and robozation, mathematical models for studying the influence of various parameters on the weld bead geometry in Gas Metal Arc(GMA) welding process are required. The results of bead on plate welds deposited using the GMA welding process has enabled mathematical relationships to be developed that model the weld bead geometry. Experimental results were compared to outputs obtained using existing formulae that correlate process input variables to output parameters and subsequent modelling was performed in order to better predict the output of the GMA welding process. The aim of this work was to explain the relationships between GMA welding variables and weld bead geometry and thus, be able to predict input weld bead size. The relationships can be usefully employed for open loop process control and also for adaptive control provided that dynamic sensing of process output is performed.

  • PDF

The Multipass Joint Tracking System by Vision Sensor (비전센서를 이용한 다층 용접선 추적 시스템)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.14-23
    • /
    • 2007
  • Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding system is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. However, in this paper, multipass tracking more than single pass tracking is performed by conventional seam tracking algorithm and developed one. And tracking performances of two algorithm are compared in multipass tracking. As the result, tracking performance in multi-pass welding shows superior conventional seam tracking algorithm to developed one.

The Application of the Welding Joint Tracking System (용접 이음 추적시스템의 응용)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.92-99
    • /
    • 2007
  • Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding systems, is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. In this paper, novel presented, developed vision processing techniques are detailed, and their application in welding fabrication is covered. The software for joint tracking system is finally proposed.

RECENT DEVELOPMENTS OF WELDING AUTOMATION AND ROBOTICS IN SHIPBUILDING

  • Jukka, Gustafsson;Mikko, Veikkolainen
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.732-736
    • /
    • 2002
  • The introduction of newly developed intelligent and user-friendly robotics has opened a new era in shipbuilding. Together with traditional and low-cost mechanization a record level of welding automation rate has been achieved in the construction of cruise vessels. In the paper modem applications and recent developments of welding automation and robotics in shipbuilding have been described and some forecast for the future trends are given. Development in the field of shipyards will be continued with accelerated speed and we shall have interesting prospects for the near future. New laser techniques can boost the shipyards in a revolutional way when production is rapidly changing, materials will be lighter and quality demands are becoming more strict.

  • PDF

Trajectory Development of Robotic Arc Welding System for Continuous Welding of Corner Area (모서리 부위 연속 용접을 위한 아크 용접 로봇 시스템의 궤적 개발)

  • 장교근;유범상
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.68-80
    • /
    • 1996
  • When a workpiece is to be arc welded around the outside corner, continuous welding without welding seam in the neighborhood of comer still remains a very difficult technique. Skilled welders weld comers by delicate“hand-eye coordination”while turning the workpiece manually, However, there is not a very clear solution to this problem in robotized arc welding process. In order to solve this problem, the coordination of a robot and a positioner with one or two axes is necessary. This paper presents a method of continuous welding around the corner of workpiece using the coordinated motion of a robot and a positioner. The positioner is either revolute jointed or prismatic jointed. In this paper, a clothoid curve is chosen for welding trajectory. The clothoid curve is excellent in connecting straight and curved weld-lines with good continuity and accommodates various welding conditions. By using this welding trajectory, the deceleration, which leads to widening of the melt and the heat affected zone, at comer area is reduced with strategic rotation of robot torch in coordination with a positioner providing smooth transition of welding torch orientation. Two types of special clothoid curves are developed for different weld slope conditions. These clothoid curves are applied to the case of linear and rotary Positioners at arc welding robot work-cell.

  • PDF