• 제목/요약/키워드: robotic system

검색결과 824건 처리시간 0.026초

AI를 활용한 시추주상도 자동 디지털 DB화 방안에 관한 연구 (A Study on the Automatic Digital DB of Boring Log Using AI)

  • 박가현;한진태;윤영노
    • 한국지반공학회논문집
    • /
    • 제37권11호
    • /
    • pp.119-129
    • /
    • 2021
  • 국토지반정보 포털시스템에서 관리되는 지반정보는 사람이 직접 PDF 파일을 보고 일일이 타이핑을 해서 구축하고 있기 때문에 인적·시간적 자원 소모가 크며, 정확도 문제가 빈번하게 발생한다. 본 연구에서는 다양한 지반정보 중에서 국내에서 가장 일반적이고 널리 활용되고 있는 시추주상도를 대상으로 인공지능(Artificial Intelligence, AI)을 활용하여 자동 디지털 데이터베이스 구축하는 방안에 대해 제안하였다 우선, 다양한 시추주상도 양식에 대해서도 예외없이 데이터를 자동으로 데이터베이스화 하기 위해서 딥러닝모델 ResNet 34를 이용하여 시추주상도 양식분류를 하였으며, 총 6가지 시추주상도 양식에 대해 이미지 분류를 진행하여 전체 정확도(accuracy)는 99.7, ROC_AUC score는 1.0의 매우 높은 정확도로 시추주상도 양식을 분리할 수 있었다. 이 후, 각각의 양식에 대하여 미세조정(fine-tuning)된 로보틱 처리 자동화 기법을 이용하여 PDF 내 텍스트를 자동으로 읽어 들인 후 시추주상도 내 일반정보, SPT 시험정보 및 지층정보에 대해 데이터를 추출, 분리하여 이 값들을 기존 국토지반정보 포털시스템에서 제공하는 형태와 동일한 형태의 DB로 구축하도록 구현하였다. 최종적으로 기존 국토지반정보 포털시스템에서 제공하는 형태와 동일한 형태로 시추주상도내 정보를 초당 140페이지의 속도로 자동으로 DB화 할 수 있었다.

식품계량 및 포장 공정 로봇 적용 자동화 시스템 개발을 위한 3D 시뮬레이션 연구 (3D Simulation Study to Develop Automated System for Robotic Application in Food Sorting and Packaging Processes)

  • 백승훈;오승일;권기현;김태형
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.230-238
    • /
    • 2023
  • 식품제조 중소기업들은 원물 투입부터 최종 팔렛타이징까지 대부분 노동집약적이고 수작업으로 구성되어 있다. 최근 로봇과 센서 데이터 기술요소 적용으로 스마트화 디지털화로 변화하는 추세이다. 본 연구에서는 식품제조기업에서 적용 설비 역량보다 작업자가 속도를 따라가지 못하는 반복작업 공정 2가지를 선정하였으며, 이를 3D 시뮬레이션을 활용하여 개선 효과성을 규명하고자 한다. 꼬치 조립 후 작업자들이 계량 후 포장하는 공정과 무작위로 공급되는 냉동식품류를 계량-내·외포장-팔렛타이징 일괄 수작업 공정 2개를 선정하였다. 가동률, 생산량, 투입 작업자 수를 검증 지표로 선정하였다. 3D 개선 공정 시뮬레이션 결과 생산량은 각각 기존보다 13.5%, 56.8% 증가했으며, 특히 팔렛타이징 로봇 적용 공정에서 높은 효과성을 보였다. 두 공정 모두 가동률과 투입인력 수는 감소함에 따라 작업자에게 피로도가 높은 공정을 로봇으로 대체 적용할 수 있어 작업 과부하를 개선할 수 있는 결과를 나타냈다. 본 연구 결과를 바탕으로 3D 시뮬레이션을 활용하여 식품계량 및 포정 공정에 로봇을 도입함으로써 개선된 공정의 성능을 정량적으로 사전 검증의 가능성을 확인할 수 있었다.

교량 상판 하부 안전점검 로봇개발 (Development of Robotic Inspection System over Bridge Superstructure)

  • 남순성;장정환;양경택
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2003년도 학술대회지
    • /
    • pp.180-185
    • /
    • 2003
  • 도로를 통과하는 차량 통행량의 증가는 장기적으로 교량에 구조적인 손상을 유발시키기 때문에 교량의 유지관리 측면에서 심각한 문제로 대두되고 있으며 준공 단계부터 구조물의 유지관리에 대하여 관심을 기울이지 않으면 공용기간 중 만족할 만한 기능의 유지 및 확보는 불가능하다. 또한, 공황 중에 균열이나 변형 등과 같은 열화손상을 조기에 발견하여 기능상의 장애나 사고를 미연에 방지하기 위해서는 정기적인 점검을 통하여 유지관리를 실시해야 하나 이에 관한 관심도가 상대적으로 낮아 구조물 유지관리에 대한 새로운 인식의 전환과 이와 관련된 기술개발이 절실히 요구되고 있다. 본 연구는 현재 굴절차 또는 점검차에 점검 인력이 직접 탑승하여 실시하는 육안조사를 대체하기 위하여 작은 카메라가 부착된 로봇(Machine Vision System)이 장착된 Linear Motion Control of System을 교량 하부에 설치하고 작업자는 교량 상부에서 외관조사를 수행함으로써 점검자에 따라 주관적으로 점검결과가 도출되는 문제를 근본적으로 해결하고 점검시 안전성을 대폭 개선하며 화상에 검측된 열화 손상 자료를 이미지 프로세싱 기법을 이용하여 객관적이고 정량적인 자료로 저장 및 제공함으로써 교량 유기관리시스템을 위한 데이터베이스를 구축하는데 기여할 수 있는 교량 하부 외관조사 자동화 시스템을 개발하는 데에 그 목적을 두고 있으며 본 시스템을 통하여 교량의 보수 보강 시기를 보다 객관적으로 산정할 수 있어서 현재 매년 기하급수적으로 늘어나는 교량의 보수 보강 비용을 상당히 절감할 수 있을 것으로 기대된다.저장기간을 계산하면, 아세설팜칼륨의 혼용 비율이 높아질수록 저장기간이 길어져서, $50\%$로 혼용하였을 때 가장 긴 저장기간이 산정되어 $20^{\circ}C$에서는 178일, $30^{\circ}C$에서는 88일이 예측되었다. 아스파탐과 아세설팜칼륨의 혼용비율을 5:5, 7:3, 9:1로 달리하여 구연산 완충액 상에 녹인 후, 20, 40, $60^{\circ}C$에서 저장하였다 크기 추정법을 이용하여 단맛을 측정한 결과 20일간의 저장 기간 동안 $20^{\circ}C$$40^{\circ}C$에서는 단맛이 유지되는 것으로 나타났다.산도 $0.4\~0.8\%^{(10)}$에서도 식품 유해가능성을 가진 균이 상당수 검출되므로 원료의 수송, 김치의 제조 및 유통과정에서 병원균에 대한 오염방지에 유의하여야 할 것이다. 확인할 수 있었다. 이상의 결과에 의하면 고농도의 유기물이 함유된 음식물쓰레기는 Hybrid Anaerobic Reactor (HAR)를 이용하여 HRT 30일 정도에서 충분히 직접 혐기성처리가 가능하며, 이때 발생된 $CH_{4}$를 회수하여 이용하면 대체에너지원으로 활용 가치가 높은 것으로 판단된다./207), $99.2\%$(238/240), $98.5\%$(133/135) 및 $100\%$ (313)였다. 각각 두 개의 요골동맥과 우내흉동맥에서 부분협착이나

  • PDF

실내 공간에서 이동 로봇의 납치 문제 해결을 위한 외부 영상 정보 및 절대 공간 좌표 활용 연구 (Research for robot kidnap problem in the indoor of utilizing external image information and the absolute spatial coordinates)

  • 전영필;박종호;임신택;정길도
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.2123-2130
    • /
    • 2015
  • 본 실내에서 활용되고 있는 자동 감시 로봇이나 로봇 청소기 등의 경우 누군가에 의해 옮겨지거나 혹은 예상치 못한 물체와의 충돌 등으로 이동 로봇의 방향이나 계획됐던 경로에서 이탈하였을 경우 원래 계획했던 경로로 다시 진입해야 하며 이에 대한 이동 로봇의 강인한 자기 위치 추정 능력이 필요하며, 이는 기존 이동 로봇의 납치 문제 해결과도 연관된다. 본 연구에서는 이동 로봇의 경우 실내에서만 동작하며, 저가의 로봇을 활용하고자 한다. 따라서 본 논문에서는 실내에 설치되어 있는 CCTV 등 외부 영상 정보 획득 장치를 활용하여 환경 영상을 획득하고 이를 절대 공간 좌표로 변환한 동시에 이동 로봇의 마커 인식을 활용함으로써 실내에서 이동 로봇의 자기 위치 추정과 납치 문제 해결하고자 하였으며, 실제 로봇 시스템을 활용하고자 포텐셜 필드 방법을 구현하였다. 이와 같이 실제 이동 로봇 시스템에 본 연구에서 제안한 방법을 구현하여 관련 실험을 진행하였고 결과를 검증하였다.

칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구 (Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model)

  • 복정진;장조원
    • 한국항공우주학회지
    • /
    • 제43권9호
    • /
    • pp.765-772
    • /
    • 2015
  • 칼새 비행의 생체모방 초소형 비행체 적용 가능성을 확인하기 위한 공력측정과 위상동기 PIV 연구가 수행되었다. 2축 회전자유도의 로봇 날개 모델과 불어내기식 풍동을 사용하였다. 비틀림 각은 ${\pm}0$, ${\pm}5$, ${\pm}10$, ${\pm}20$도의 진폭을 갖고, 스트로크각은 90도의 위상차를 갖는 단순조화함수로 변화시켰다. 비틀림 각에 따른 시간에 대한 양력계수 변화는 작은 공력감소와 지연만을 나타내며 주목할 만한 차이를 보이지 않았다. 그러나 항력은 작은 비틀림 각 변화가 큰추력을 생성할 수 있음을 보여주었다. 이러한 것들은 칼새가 비행 중에 작은 비틀림 각을 사용하는 이유를 간접적으로 설명해 준다. PIV연구 결과는 공력지연이 날개주위의 와류구조와 밀접한 관계있다는 것을 보여준다. 이러한 결과는 칼새 모방형 초소형비행체 설계에 있어 비틀림 각은 필수적인 파라미터로서 반드시 고려되어야 함을 의미한다.

SOMANGNET: SMALL TELESCOPE NETWORK OF KOREA

  • Im, Myungshin;Kim, Yonggi;Lee, Chung-Uk;Lee, Hee-Won;Pak, Soojong;Shim, Hyunjin;Sung, Hyun-Il;Kang, Wonseok;Kim, Taewoo;Heo, Jeong-Eun;Hinse, Tobias C.;Ishiguro, Masateru;Lim, Gu;Ly, Cuc T.K.;Paek, Gregory S.H.;Seo, Jinguk;Yoon, Joh-na;Woo, Jong-Hak;Ahn, Hojae;Cho, Hojin;Choi, Changsu;Han, Jimin;Hwang, Sungyong;Ji, Tae-Geun;Lee, Seong-Kook J.;Lee, Sumin;Lee, Sunwoo;Kim, Changgon;Kim, Dohoon;Kim, Joonho;Kim, Sophia;Jeong, Mankeun;Park, Bomi;Paek, Insu;Kim, Dohyeong;Park, Changbom
    • 천문학회지
    • /
    • 제54권3호
    • /
    • pp.89-102
    • /
    • 2021
  • Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4-1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scientific scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.

SegNet과 ResNet을 조합한 딥러닝에 기반한 횡단보도 영역 검출 (Detection of Zebra-crossing Areas Based on Deep Learning with Combination of SegNet and ResNet)

  • 량한;서수영
    • 한국측량학회지
    • /
    • 제39권3호
    • /
    • pp.141-148
    • /
    • 2021
  • 본 논문은 SegNet과 ResNet을 조합한 딥러닝을 이용하여 횡단보도를 검출하는 방법을 제안한다. 시각 장애인의 경우 횡단보도가 어디에 있는지 정확히 아는 게 안전한 교통 시스템에서 중요하다. 딥러닝에 의한 횡단보도 검출은 이 문제에 대한 좋은 해결책이 될 수 있다. 로봇 시각 기반 보조 기술은 지난 몇년 동안 카메라를 사용하는 특정 장면에 초점을 두고 제안되어 왔다. 이러한 전통적인 방법은 비교적 긴 처리 시간으로 의미있는 결과를 얻었으며 횡단보도 인식을 크게 향상시켰다. 그러나 전통적인 방법은 지연 시간이 길고 웨어러블 장비에서 실시간을 만족시킬 수 없다. 본 연구에서 제안하는 방법은 취득한 영상에서 횡단보도를 빠르고 안정적으로 검출하기 위한 모델을 제안한다. 모델은 SegNet과 ResNet을 기반으로 개선되었으며 3단계로 구성된다. 첫째, 입력 영상을 서브샘플링하여 이미지 특징을 추출하고 ResNet의 컨벌루션 신경망을 수정하여 새로운 인코더로 만든다. 둘째, 디코딩 과정에서 업샘플링 네트워크를 통해 특징맵을 원영상 크기로 복원한다. 셋째, 모든 픽셀을 분류하고 각 픽셀의 정확도를 계산한다. 이 실험의 결과를 통하여 수정된 시맨틱 분할 알고리즘의 적격한 정확성을 검증하는 동시에 결과 출력 속도가 비교적 빠른 것으로 파악되었다.

Development of Detailed Design Automation Technology for AI-based Exterior Wall Panels and its Backframes

  • Kim, HaYoung;Yi, June-Seong
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1249-1249
    • /
    • 2022
  • The facade, an exterior material of a building, is one of the crucial factors that determine its morphological identity and its functional levels, such as energy performance, earthquake and fire resistance. However, regardless of the type of exterior materials, huge property and human casualties are continuing due to frequent exterior materials dropout accidents. The quality of the building envelope depends on the detailed design and is closely related to the back frames that support the exterior material. Detailed design means the creation of a shop drawing, which is the stage of developing the basic design to a level where construction is possible by specifying the exact necessary details. However, due to chronic problems in the construction industry, such as reducing working hours and the lack of design personnel, detailed design is not being appropriately implemented. Considering these characteristics, it is necessary to develop the detailed design process of exterior materials and works based on the domain-expert knowledge of the construction industry using artificial intelligence (AI). Therefore, this study aims to establish a detailed design automation algorithm for AI-based condition-responsive exterior wall panels and their back frames. The scope of the study is limited to "detailed design" performed based on the working drawings during the exterior work process and "stone panels" among exterior materials. First, working-level data on stone works is collected to analyze the existing detailed design process. After that, design parameters are derived by analyzing factors that affect the design of the building's exterior wall and back frames, such as structure, floor height, wind load, lift limit, and transportation elements. The relational expression between the derived parameters is derived, and it is algorithmized to implement a rule-based AI design. These algorithms can be applied to detailed designs based on 3D BIM to automatically calculate quantity and unit price. The next goal is to derive the iterative elements that occur in the process and implement a robotic process automation (RPA)-based system to link the entire "Detailed design-Quality calculation-Order process." This study is significant because it expands the design automation research, which has been rather limited to basic and implemented design, to the detailed design area at the beginning of the construction execution and increases the productivity by using AI. In addition, it can help fundamentally improve the working environment of the construction industry through the development of direct and applicable technologies to practice.

  • PDF

질량 분석기의 원형 모델 개발 (Development of a Prototype Mass Spectrometer)

  • 이진근;이남석;강성원;김선태;장규하;이유;홍익선;최정림;민경욱;정종일
    • 우주기술과 응용
    • /
    • 제3권1호
    • /
    • pp.86-99
    • /
    • 2023
  • 질량분석기는 태양계와 생명의 기원을 밝히기 위한 필수 과학 장비로서, 달/행성/소행성/혜성 등의 대기 및 지표에 존재하는 중성 원소와 이온에 대한 정보를 파악하기 위해 1970년대 초반부터 우주 탐사에 활용되어 왔다. 제4차 우주개발진흥 기본계획(2023-2027)에 따르면 우리나라는 2032년에 달 착륙을 2045년에는 화성 착륙을 성공하는 것을 핵심 목표로 삼고 무인 탐사를 위한 능력을 확보하는 데 기술개발의 역점을 두기로 하였다. 따라서 우주 탐사의 과학적 목표 달성을 위한 가장 기본적인 장비이지만 국내 우주탐사에서 한번도 시도되지 않았던 질량분석기의 국내 개발은 필수적이라고 할 수 있다. 본 논문에서는 국내에서 개발된 사중극자 질량분석기의 원리와 원형 모델 및 성능에 대해 소개하고 향후 발전 방향에 대해 논의하고자 한다.

딥러닝 기반 배추 심 중심 영역 및 깊이 분류 모델 개발 (Development of a deep learning-based cabbage core region detection and depth classification model)

  • 권기현;노종혁;김아나;김태형
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.392-399
    • /
    • 2023
  • 본 논문에서는 김치 제조 공정 중 배추 심 제거 공정의 로봇 자동화를 위한 배추 심 영역 및 깊이를 판별하는 딥러닝 모델을 제안하는 것이다. 또한 계측된 배추의 심 깊이를 예측하는 것이 아닌 discrete 클래스로 변환하여 영역 검출 및 분류를 동시에 하는 모델을 제시하였다. 딥러닝 모델 학습 및 검증을 위하여 전처리 과정을 거지치 않고 수확된 배추 522 포기에 대한 RGB 영상을 획득하였다. 획득한 영상으로부터 심 영역 및 깊이 라벨링 그리고 데이터 증강 기법을 적용하였다. 제안하는 YOLO-v4 딥러닝 모델 기반 배추 심 영역 검출 및 분류 모델의 성능을 평가하기 위하여 mAP, IoU, accuracy, sensitivity, specificity 그리고 F1-score로 선정하였다. 그 결과 배추 심 영역 검출은 mAP 그리고 IoU 값이 각각 0.97 그리고 0.91로 나타났으며, 심 깊이 분류의 경우 accuracy 그리고 F1-score 값이 각각 96.2% 그리고 95.5%로 나타났다. 본 연구 결과를 통하여 배추의 심 영역 검출 및 깊이 정보 분류가 가능하며, 추후 배추 심 제거 공정의 로봇-자동화 시스템 개발에 활용될 수 있는 가능성을 확인하였다.