• Title/Summary/Keyword: robotic finger

Search Result 40, Processing Time 0.028 seconds

Reliability of Modified Ashworth Scale Using a Haptic Robot Finger Simulating Finger Spasticity (손가락 경직을 모사하는 로봇 시뮬레이터를 이용한 경직도 검진의 신뢰도 평가)

  • Ha, Dokyeong;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.125-133
    • /
    • 2017
  • This paper presents the inter-rater reliability of finger spasticity assessment tested realized by using finger simulator that mimics finger spasticity of patients after a stroke. For controlling the simulator torque, finger spasticity was modeled, and the model parameters were obtained by measuring quantitative data while grading based on Modified Ashworth Scale (MAS). A robotic finger simulator was designed for mimicking finger spasticity. Evaluation of this simulator with the help of seven rehabilitation doctors showed that the simulator had a Cohen's kappa value of 0.619 for Metacarpophalangeal Joint and 0.514 for Proximal Interphalangeal Joint. Fleiss' kappa between raters is 0.513 for Metacarpophalangeal Joint and 0.486 for Proximal Interphalangeal Joint. Therefore, the spasticity assessment made by MAS grade system is not reliable owing to the subjectivity of the assessment. The proposed robotic simulator can be used as a training tool for improving the reliability of the spasticity assessment.

$H{\infty}$-force control of a artificial finger with distributed force sensor and piezoelectric actuator (분포센서를 가진 인공지의 $H{\infty}$-힘제어)

  • ;;;;Seiji Chonan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.555-565
    • /
    • 1996
  • This paper is concerned with the theoretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is a uniform flexible cantilever beam equipped with a distributed set of compact grasping force sensors. Control action is applied by a piezoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro- mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem in which the finger is commanded to grasp an object. The H$_{\infty}$-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment..

  • PDF

PID-Force Control of a Artificial Finger with Distributed Force Sensor and Piezoelectric Actuator (분포센서를 가진 인공지의 PID-힘 제어)

  • Lee, Jae-Jung;Hong, Dong-Pyo;Chung, Tae-Jin;Chonan, Seiji;Chong, Kil-To;No, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.94-103
    • /
    • 1996
  • This paper is concerned with the theroretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is uniform flexible cantilever beam equipped with a distributed set of compact grasping force secnsors. Control action is applied by a qiexoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro-mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem which the finger is commanded to grasp an object The PID-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment.

  • PDF

Underactuated Finger Mechanism for Body-Powered Partial Prosthesis (신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.

Development of a Robotic Transplanter for Bedding Plants(III)-Development of a Robotic Transplanter (육묘용 로봇 이식기의 개발(III)-로봇이식기의 개발-)

  • 류관희;이희환;김기영;한재성
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1997.06c
    • /
    • pp.238-246
    • /
    • 1997
  • This study was conducted to develop a robotic transplanter for bedding plants. The robotic transplanter consisted of machine vision system, a manipulator, a gripper and plug tray transfer system. The performance of the robotic transplanter was tested and compared by two different transplanting methods, which were to consider the leaf orientation of seedlings and not to. Results of this study were as follows. (1) A cartesian coordinate manipulator for a robotic transplanter with 3 degree of freedom was constructed. The accuracy of position control was $\pm$1 mm. (2) The robotic transplanter with the machine vision system, the manipulator, the gripper and the transfer system was developed and tested with a shovel-type finger. Without considering the orientation of leaves, the success rates of transplanting healthy cucumber seedlings in 72-cell and 128-cell plug-trays were 95.5% and 94.5% respectively. Considering the orientation of leaves, the success rates of transplanting healthy cucumber seedling in 72-cell and 128-cell plug-trays were 96.0% and 95.0% respectively.

  • PDF

A Study on Grasping Control of Robotic Hand Fingers (로봇 핸드핑거의 파지제어에 관한 연구)

  • Shim, Byoung-Kyun;Jung, Yang-Guen;Park, In-Man;hwang, Won-Jun;Kang, Un-Wook;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.141-145
    • /
    • 2013
  • This paper is the development of industrial robotic hand system and the design methods of industrial robot hand that can mimic human fingers motion. In order to overcome problems incurred during the reduction of the mobility, this study focuses on analyzing human hand structure and finger movements from an anatomical point of view. As a result, distinctive features that improve the discovered stability in constraints for range of motion in the fingers is reflected in this design concept. A 4-bar Linkage is used in robot finger structure. Lastly, there were experiments to inspect the developed robot hands performance. The developed robot hand has many potential applications and can be in many different fields.

Marionette Control System using Gesture Mode Change (제스처 할당 모드를 이용한 마리오네트 조정 시스템)

  • Cheon, Kyeong-Min;Kwak, Su Hui;Rew, Keun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.150-156
    • /
    • 2015
  • In this paper, a marionette control system using wrist and finger gestures through an IMU sensor is studied. The signals from the sensor device are conditioned and recognized, then the commands are sent to the 8 motors of the marionette via Bluetooth (5 motors control the motion of the marionette, and 3 motors control the location of the marionette). It is revealed that the degree of freedom of fingers are not independent from each other, therefore, some gestures are hardly made. Gesture mode changes for difficult postures of the fingers in cases of a lack of finger DOF are proposed. Therefore, the gesture mode change switches the assignment of gesture as required. Experimental results show that gesture mode change is successful for appropriate postures of a marionette.

EMG-based Real-time Finger Force Estimation for Human-Machine Interaction (인간-기계 인터페이스를 위한 근전도 기반의 실시간 손가락부 힘 추정)

  • Choi, Chang-Mok;Shin, Mi-Hye;Kwon, Sun-Cheol;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.132-141
    • /
    • 2009
  • In this paper, we describe finger force estimation from surface electromyogram (sEMG) data for intuitive and delicate force control of robotic devices such as exoskeletons and robotic prostheses. Four myoelectric sites on the skin were found to offer favorable sEMG recording conditions. An artificial neural network (ANN) was implemented to map the sEMG to the force, and its structure was optimized to avoid both under- and over-fitting problems. The resulting network was tested using recorded sEMG signals from the selected myoelectric sites of three subjects in real-time. In addition, we discussed performance of force estimation results related to the length of the muscles. This work may prove useful in relaying natural and delicate commands to artificial devices that may be attached to the human body or deployed remotely.

Artificial Neural Network for Stable Robotic Grasping (안정적 로봇 파지를 위한 인공신경망)

  • Kim, Kiseo;Kim, Dongeon;Park, Jinhyun;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.94-103
    • /
    • 2019
  • The optimal grasping point of the object varies depending on the shape of the object, such as the weight, the material, the grasping contact with the robot hand, and the grasping force. In order to derive the optimal grasping points for each object by a three fingered robot hand, optimal point and posture have been derived based on the geometry of the object and the hand using the artificial neural network. The optimal grasping cost function has been derived by constructing the cost function based on the probability density function of the normal distribution. Considering the characteristics of the object and the robot hand, the optimum height and width have been set to grasp the object by the robot hand. The resultant force between the contact area of the robot finger and the object has been estimated from the grasping force of the robot finger and the gravitational force of the object. In addition to these, the geometrical and gravitational center points of the object have been considered in obtaining the optimum grasping position of the robot finger and the object using the artificial neural network. To show the effectiveness of the proposed algorithm, the friction cone for the stable grasping operation has been modeled through the grasping experiments.

Evaluation of the Contributions of Individual Finger Forces in Various Submaximal Grip Force Exertion Levels

  • Kong, Yong-Ku;Lee, Inseok;Lee, Juhee;Lee, Kyungsuk;Choi, Kyeong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.361-370
    • /
    • 2016
  • Objective:The aim of this study is to evaluate contributions of individual finger forces associated with various levels of submaximal voluntary contraction tasks. Background: Although many researches for individual finger force have been conducted, most of the studies mainly focus on the maximal voluntary contraction. However, Information concerning individual finger forces during submaximal voluntary contraction is also very important for developing biomechanical models and for designing hand tools, work equipment, hand prostheses and robotic hands. Due to these reasons, studies on the contribution of individual finger force in submaximal grip force exertions should be fully considered. Method: A total of 60 healthy adults without any musculoskeletal disorders in the upper arms participated in this study. The young group (mean: 23.7 yrs) consisted of 30 healthy adults (15 males and 15 females), and the elderly group (mean: 75.2 yrs) was also composed of 30 participants (15 males and 15 females). A multi-Finger Force Measurement (MFFM) System developed by Kim and Kong (2008) was applied in order to measure total grip strength and individual finger forces. The participants were asked to exert a grip force attempting to minimize the difference between the target force and their exerted force for eight different target forces (5, 15, 25, 35, 45, 55, 65, and 75% MVCs). These target forces based on the maximum voluntary contraction, which were obtained from each participant, were randomly assigned in this study. Results: The contributions of middle and ring fingers to the total grip force represented an increasing trend as the target force level increased. On the other hand, the contributions of index and little fingers showed a decreasing trend as the target force level increased. In particular, Index finger exerted the largest contribution to the total grip force, followed by middle, ring and little fingers in the case of the smallest target force level (5% MVC), whereas middle finger showed the largest contribution, followed by ring, index and little fingers at the largest target force levels (65 and 75% MVCs). Conclusion: Each individual finger showed a different contribution pattern to the grip force exertion. As the target force level increase from 5 to 75% MVC, the contributions of middle and ring fingers showed an increasing trend, whereas the contributions of index and little fingers represented a decreasing trend in this study. Application: The results of this study can be useful information when designing robotic hands, hand tools and work equipment. Such information would be also useful when abnormal hand functions are evaluated.