• Title/Summary/Keyword: robot vision

Search Result 875, Processing Time 0.031 seconds

Robot vision interface (로보트와 Vision System Interface)

  • 김선일;여인택;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.101-104
    • /
    • 1987
  • This paper shows the robot-vision system which consists of robot, vision system, single board computer and IBM-PC. IBM-PC based system has a great flexibility in expansion for a vision system interfacing. Easy human interfacing and great calculation ability are the benefits of this system. It was carried to interface between each component. The calibration between two coordinate systems is studied. The robot language for robot-vision system was written in "C" language. User also can write job program in "C" language in which the robot and vision related functions reside in the library.side in the library.

  • PDF

A Vision System for ]Robot Soccer Game (로봇 축구 대회를 위한 영상 처리 시스템)

  • 고국원;최재호;김창효;김경훈;김주곤;이수호;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.434-438
    • /
    • 1996
  • In this paper we present the multi-agent robot system and the vision system developed for participating in micro robot soccer tournament. The multi-agent robot system consists of micro robot, a vision system, a host computer and a communication module. Micro robot are equipped with two mini DC motors witf encoders and gearboxes, a R/F receiver, a CPU and infrared sensors for obstacle detection. A vision system is used to recognize the position of the ball and opponent robots, position and orientation of our robots. The vision system is composed of a color CCD camera and a vision processing unit(AISI vision computer). The vision algorithm is based on morphological method. And it takes about 90 msec to detect ball and 3-our robots and 3-opponent robots with reasonable accuracy

  • PDF

The development of a micro robot system for robot soccer game (로봇 축구 대회를 위한 마이크로 로봇 시스템의 개발)

  • 이수호;김경훈;김주곤;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.507-510
    • /
    • 1996
  • In this paper we present the multi-agent robot system developed for participating in micro robot soccer tournament. The multi-agent robot system consists of micro robot, a vision system, a host computer and a communication module. Mcro robot are equipped with two mini DC motors with encoders and gearboxes, a R/F receiver, a CPU and infrared sensors for obstacle detection. A vision system is used to recognize the position of the ball and opponent robots, position and orientation of our robots. The vision system is composed of a color CCD camera and a vision processing unit. Host computer is a Pentium PC, and it receives information from the vision system, generates commands for each robot using a robot management algorithm and transmits commands to the robots by the R/F communication module. And in order to achieve a given mission in micro robot soccer game, cooperative behaviors by robots are essential. Cooperative work between individual agents is achieved by the command of host computer.

  • PDF

A Study on the Practicality of Vision Control Scheme used for Robot's Point Placement task in Discontinuous Trajectory (불연속적인 궤적에서 로봇 점 배치작업에 사용된 비젼 제어기법의 실용성에 대한 연구)

  • Son, Jae-Kyeong;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.386-394
    • /
    • 2011
  • This paper is concerned with the application of the vision control scheme for robot's point placement task in discontinuous trajectory caused by obstacle. The proposed vision control scheme consists of four models, which are the robot's kinematic model, vision system model, 6-parameters estimation model, and robot's joint angles estimation model. For this study, the discontinuous trajectory by obstacle is divided into two obstacle regions. Each obstacle region consists of 3 cases, according to the variation of number of cameras that can not acquire the vision data. Then, the effects of number of cameras on the proposed robot's vision control scheme are investigated in each obstacle region. Finally, the practicality of the proposed robot's vision control scheme is demonstrated experimentally by performing the robot's point placement task in discontinuous trajectory by obstacle.

Moving Target Tracking using Vision System for an Omni-directional Wheel Robot (전방향 구동 로봇에서의 비젼을 이용한 이동 물체의 추적)

  • Kim, San;Kim, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1053-1061
    • /
    • 2008
  • In this paper, a moving target tracking using a binocular vision for an omni-directional mobile robot is addressed. In the binocular vision, three dimensional information on the target is extracted by vision processes including calibration, image correspondence, and 3D reconstruction. The robot controller is constituted with SPI(serial peripheral interface) to communicate effectively between robot master controller and wheel controllers.

Robot and vision system interface for material handling on conveyor belt system (컨베이어 벨트 시스템에서의 부품 처리를 위한 로보트와 시각 시스템의 접속)

  • 박태형;박충수;이범희;이상욱;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.608-612
    • /
    • 1990
  • The robot system which can handle a stream of randomly positioned parts on a conveyor belt system, is developed. It is composed of a PUMA 560 robot, a conveyor belt system and a vision system. The performance of the overall system is mainly dependent upon the robot and vision system interface technique. A vision algorithm is developed to determine the position, orientation and type of the part. Calibration procedure and the vision-to-robot transformation are also proposed. Experimental results are then presented and discussed.

  • PDF

A Study on the Effect of Weighting Matrix of Robot Vision Control Algorithm in Robot Point Placement Task (점 배치 작업 시 제시된 로봇 비젼 제어알고리즘의 가중행렬의 영향에 관한 연구)

  • Son, Jae-Kyung;Jang, Wan-Shik;Sung, Yoon-Gyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.986-994
    • /
    • 2012
  • This paper is concerned with the application of the vision control algorithm with weighting matrix in robot point placement task. The proposed vision control algorithm involves four models, which are the robot kinematic model, vision system model, the parameter estimation scheme and robot joint angle estimation scheme. This proposed algorithm is to make the robot move actively, even if relative position between camera and robot, and camera's focal length are unknown. The parameter estimation scheme and joint angle estimation scheme in this proposed algorithm have form of nonlinear equation. In particular, the joint angle estimation model includes several restrictive conditions. For this study, the weighting matrix which gave various weighting near the target was applied to the parameter estimation scheme. Then, this study is to investigate how this change of the weighting matrix will affect the presented vision control algorithm. Finally, the effect of the weighting matrix of robot vision control algorithm is demonstrated experimentally by performing the robot point placement.

An Experimental Study on the Optimal Arrangement of Cameras Used for the Robot's Vision Control Scheme (로봇 비젼 제어기법에 사용된 카메라의 최적 배치에 대한 실험적 연구)

  • Min, Kwan-Ung;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.15-25
    • /
    • 2010
  • The objective of this study is to investigate the optimal arrangement of cameras used for the robot's vision control scheme. The used robot's vision control scheme involves two estimation models, which are the parameter estimation and robot's joint angle estimation models. In order to perform this study, robot's working region is divided into three work spaces such as left, central and right spaces. Also, cameras are positioned on circular arcs with radius of 1.5m, 2.0m and 2.5m. Seven cameras are placed on each circular arc. For the experiment, nine cases of camera arrangement are selected in each robot's work space, and each case uses three cameras. Six parameters are estimated for each camera using the developed parameter estimation model in order to show the suitability of the vision system model in nine cases of each robot's work space. Finally, the robot's joint angles are estimated using the joint angle estimation model according to the arrangement of cameras for robot's point-position control. Thus, the effect of camera arrangement used for the robot's vision control scheme is shown for robot's point-position control experimentally.

Development of Robot Vision Control Schemes based on Batch Method for Tracking of Moving Rigid Body Target (강체 이동타겟 추적을 위한 일괄처리방법을 이용한 로봇비젼 제어기법 개발)

  • Kim, Jae-Myung;Choi, Cheol-Woong;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.161-172
    • /
    • 2018
  • This paper proposed the robot vision control method to track a moving rigid body target using the vision system model that can actively control camera parameters even if the relative position between the camera and the robot and the focal length and posture of the camera change. The proposed robotic vision control scheme uses a batch method that uses all the vision data acquired from each moving point of the robot. To process all acquired data, this robot vision control scheme is divided into two cases. One is to give an equal weight for all acquired data, the other is to give weighting for the recent data acquired near the target. Finally, using the two proposed robot vision control schemes, experiments were performed to estimate the positions of a moving rigid body target whose spatial positions are unknown but only the vision data values are known. The efficiency of each control scheme is evaluated by comparing the accuracy through the experimental results of each control scheme.

The improvement of MIRAGE I robot system (MIRAGE I 로봇 시스템의 개선)

  • 한국현;서보익;오세종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.605-607
    • /
    • 1997
  • According to the way of the robot control, the robot systems of all the teams which participate in the MIROSOT can be divided into three categories : the remote brainless system, the vision-based system and the robot-based system. The MIRAGE I robot control system uses the last one, the robot-based system. In the robot-based system the host computer with the vision system transmits the data on only the location of the ball and the robots. Based on this robot control method, we took part in the MIROSOT '96 and the MIROSOT '97.

  • PDF