• Title/Summary/Keyword: robot systems

Search Result 3,634, Processing Time 0.029 seconds

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

Study on Path Generation for Laser Welding Robot (레이저 용접 로봇의 경로 생성에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Park, Kyoung-Taik
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.14-20
    • /
    • 2010
  • Robot path generation and laser welding technology for manufacturing automotive body are studied. Laser welding and industrial robot systems are used with the robot based laser welding system. The laser system used in this study is 1.6kW Fiber laser, while the robot system is 6 axes Industrial robot (payload: 130kg). The robot based laser welding system is equipped with laser scanner system for remote laser welding. The laser source, robot and laser scanner system are used to increase the processing speed and to improve the process efficiency. The welding joints of steel plate are butt and lapped joints. The quality test of the laser welding are through the observation the shape of bead on plate and cross-section of welding part. The 3 dimensional laser welding for non-linear pipe welding line is performed. This paper introduces the robot based laser welding system to resolve the limited welding speed and accuracy of the conventional spot welding system.

  • PDF

Integral Sliding Mode Control for Robot Manipulators (로봇 매니퓰레이터를 위한 적분 슬라이딩 모드 제어)

  • Yoo, Dong-Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1266-1269
    • /
    • 2008
  • We propose an integral sliding mode control for robot manipulators guaranteeing that sliding motion exists starting from an initial time. Also, we prove the asymptotic stability for robot manipulators using three important properties in the robot dynamics: skew-symmetry, positive-definiteness, and boundedness of robot parameter matrices. From illustrative examples, we show that the proposed method effectively controls for robot manipulators.

Mission Scenario-based Design of Hydraulic Manipulators for Armored Robot Systems (미션 시나리오기반 장갑형 로봇시스템 유압매니퓰레이터 설계)

  • Jeong, Dongtak;Kim, Cheol;Kim, Ju Hyun;Suh, Jinho;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.51-60
    • /
    • 2017
  • In this study to develop disaster response robot in complex disaster site, we present the design of hydraulic manipulators for armored robot systems. To this end, we performed voice of customer researches with firefighters and rescue personnel. We created and analyzed the mission scenario of firefighters and rescue personnel in complex disaster situations, and derived the required functions of the robot to successfully perform missions. A heavy-duty, heat resistant, dexterous hydraulic robot manipulators is designed to realize the required functions. The designed robot has been verified through simulations and analysis in terms of the working area of the robot, actuating torques, and temperature analysis.

Design of a Robot-in-the-Loop Simulation Based on OPRoS (OPRoS 기반 로봇시스템의 Robot-in-the-Loop Simulation 구조)

  • Kim, Seong-Hoon;Park, Hong Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This paper proposes the architecture of the RILS (Robot-in-the-Loop-Simulation) consisting of the robot, the virtual robot, and the avatar robot which is the type of virtual robots operating according to the robot status and behavior. And the synchronization algorithm for mobilization part of the avatar robot is suggested, which reduces the difference between behaviors of the robot and those of the avatar robot. This difference occurs due to the environmental and mechanical mismatches between the robot and avatar robot. In order to reduce this difference in robots behaviors, the synchronization algorithm controls the avatar robot based on the data observed from the robot's behavior. The proposed architecture and the synchronization algorithm are validated from some simulation results.

Motion Planning of an Autonomous Mobile Robot in Flexible Manufacturing Systems

  • Kim, Yoo-Seok-;Lee, Jang-Gyu-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1254-1257
    • /
    • 1993
  • Presented in this paper is a newly developed motion planning method of an autonomous mobile robot(MAR) which can be applied to flexible manufacturing systems(FMS). The mobile robot is designed for transporting tools and workpieces between a set-up station and machines according to production schedules of the whole FMS. The proposed method is implemented based on an earlier developed real-time obstacle avoidance method which employs Kohonen network for pattern classification of sonar readings and fuzzy logic for local path planning. Particulary, a novel obstacle avoidance method for moving objects using a collision index, collision possibility measure, is described. Our method has been tested on the SNU mobile robot. The experimental results show that the robot successfully navigates to its target while avoiding moving objects.

  • PDF

SAITEL : an easy robot language to use for SCARA type robots (사용에 편리한 ROBOT 언어 (SAITEL)의 개발)

  • 이영우;이관형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.502-507
    • /
    • 1990
  • The robot operation by teach playback is easy and was widely used for simple jobs performed by a simple robot manipulator. However, as robots and their control systems and tasks become more and more sophisticated, such a simple robot operation is no longer adequate and programming languages capable for the complicated systems and tasks are greatly needed. In this paper, a high-level robot-specific programming language, SAITEL, is presented. It is an interpreter, based on Assembly, and has form similar to BASIC. SAITEL is easy to use for people who are not skilled programmers, and provides the capability to define robot task very conveniently. SAITEL was implemented on a direct drive SCARA robot developed in the Samsung Advanced Institute of Technology, and proved to be very useful for the operation of SCARA-type robots. It can be used also for other types of robots by slight modification.

  • PDF

Development and Control of a Roadway Seam Tracking Mobile Robot

  • Cho, Hyun-Taek;Jeon, Poong-Woo;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2502-2507
    • /
    • 2003
  • In this paper, a crack sealing robot is developed. The crack sealing robot is built to detect, track, and seal the crack on the pavement. The sealing robot is required to brush all dirt in the crack out for preparing a better sealing job. Camera calibration has been done to get accurate crack position. In order to perform a cleaning job, the explicit force control method is used to regulate a specified desired force in order to maintain constant contact with the ground. Experimental studies of force tracking control are conducted under unknown environment stiffness and location. Crack tracking control is performed. Force tracking results are excellent and the robot finds and tracks the crack very well.

  • PDF

Roll Replacing Robot Systems for Wire-rod Press Roll (선재 압연 롤 교체 로봇 시스템)

  • Jin, Mao-Lin;You, Ki-Sung;Ryu, Hwang-Ryol;Choi, Chin-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.647-650
    • /
    • 2011
  • This paper presents the development of roll replacement robot system for wire-rod press rolls. The roll replacement robot system consist of a palletized railway truck, a 6-DOF industrial robot manipulator, a roll changing tool and a hydraulic power system. Results of simulation and pilot experiment show the roll changing task can be successfully automated using proposed robot system.

Technical Trend of the Lower Limb Exoskeleton System for the Performance Enhancement (인체 능력 향상을 위한 하지 외골격 시스템의 기술 동향)

  • Lee, Hee-Don;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.364-371
    • /
    • 2014
  • The purpose of this paper is to review recent developments in lower limb exoskeletons. The exoskeleton system is a human-robot cooperation system that enhances the performance of the wearer in various environments while the human operator is in charge of the position control, contextual perception, and motion signal generation through the robot's artificial intelligence. This system is in the form of a mechanical structure that is combined to the exterior of a human body to improve the muscular power of the wearer. This paper is followed by an overview of the development history of exoskeleton systems and their three main applications in military/industrial field, medical/rehabilitation field and social welfare field. Besides the key technologies in exoskeleton systems, the research is presented from several viewpoints of the exoskeleton mechanism, human-robot interface and human-robot cooperation control.