• Title/Summary/Keyword: robot simulation

Search Result 1,696, Processing Time 0.108 seconds

A Study on the Control of Macro-Micro Robotic Systems (마크로-마이크로 로보트의 제어에 관한 연구)

  • 주진화;명지태;박의열;이장명
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.47-56
    • /
    • 1994
  • In this paper, we demonstrate how to design a redundant robot which is suitable for the multiple task execution without any constraints on the work space. The implementation is possible by the rigid connection of a cacro-robot and a micro-robot. A 5 d.o.f. articulated robor designed for commercial purpose is utilized as a micro-robot which can perform a general task with the appropriate adjustment of its base location. The base of a micro-robot is located at a suitable position by the macro-robot designed and implemented through this research. A task assigned to this redundant robot is performed mainly by the micro-robot. However, when the micro-robot cannot perform the task by itself or when the micro-robot has difficulties in performing the task, the coordination of the macro-robot is requited. To monitor the task execution efficiency of the micro-robot, we used the 'Manipulability Measure' as a cost function. The coordination between the two robots are verified both by the simulation and the experiment.

  • PDF

Dynamic Stiffness Design of Inspection Robot Frame Using Multi-body Dynamic Simulation (동역학 해석을 통한 송전선로 검사로봇 프레임 설계에 관한 연구)

  • Lee, Jun Young;Kim, Moon Young;Lim, Ji Youn;Kim, Chang Hwan;Yim, Hong Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.169-175
    • /
    • 2015
  • This study aims to improve the dynamic stiffness of an inspection robot frame to prevent derailment from transmission lines. Finite element models for the transmission lines and robot frame are developed for the multi-body dynamic simulation. Natural frequency analysis was conducted using the FE models. Three types of spacer damper clamps installed on 4-conductor transmission lines are used to evaluate the derailment of the robot. Multi-body dynamic simulations with FE models are demonstrated for sub-span oscillation. When the robot operates, derailment of inspection robot from the transmission lines is determined because of resonance. To prevent the resonance, body position was changed and thickness optimization was conducted. The results show that derailment was not occurred because of the natural frequency improvement.

Modeling and Motion Control of Mobile Robot for Lattice Type Welding

  • Jeon, Yang-Bae;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.83-93
    • /
    • 2002
  • This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90$^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.

Study on Robot Manipulator applying the Gravity Compensator (중력 보상기를 적용한 로봇 매니퓰레이터 연구)

  • Choi, Hyeung-Sik;Hur, Jae-Gwan;Seo, Hae-Yong;Hong, Sung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.267-274
    • /
    • 2010
  • In this paper, the structure of a gravity compensator was studied, and the 6-axis robot manipulator which is newly developed by applying the gravity compensator is presented to improve the torque performance of the robot joint. The kinematics analysis on the robot was presented. Also, a simulation of the performance of the joint actuator of robot adopting the gravity compensator was presented by applying various springs. According to the simulation results, it was validated that the payload effect on the robot joint actuator adopting the gravity compensator is reduced in proportion to the spring intensity of the gravity compensator.

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

Leader Robot Controller Considering Follower with Input Constraint (입력 제한을 가진 추종 로봇을 고려한 선도 로봇 제어기)

  • Lee, Seung-Joo;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1032-1040
    • /
    • 2012
  • This paper proposes controller of leader robot considering following robot with input constraints based on leader-following approach. In the previous formation control researches, it was assumed that leader and follower is same object. If leader robot drives as maximum speed that the initial position errors still remain even if following robot have same velocity as a leader. In the situation that velocity of following robot is lower than its leader robot, following robot cannot follow leader robot. Furthermore, the following robot will not be able to made formation with leader robot and keep proximity communication or sensing range. Therefore, multiple mobile robot system using leader-following method should be guaranteed range to get information each other. In this paper, Leader robot is driving to goal position using linear controller and following robot is following trajectory to be made from leader robot. We assume that following robot has input constraints to realize different performance between leader robot and following robot. We design controller of leader robot for desired goal position including the errors between formation and following robot. Thus, we propose leader robot controller considering input constraints of following robot. Finally, we were able to confirm the validity of the proposed method based on simulation results.

Adaptive Control of Space Robot in Inertia Space (Inertia Space에서 우주 로봇의 적응제어)

  • Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.381-385
    • /
    • 1992
  • In this paper, dynamic modeling and adaptive control problems for a space robot system are discussed. The space robot consist of a robot manipulator mounted on a free-floating base where no attitude control is applied. Using an extended robot model, the entire space robot can be viewed as an under-actuated robot system. Based on nonlinear control theory, the extended space robot model can then be decomposed into two subsystems: one is input-output exactly linearizable, and the other is unlinearizable and represents an internal dynamics. With this decomposition, a normal form-augmentation approach and an augmented state-feedback control are proposed to facilitate the design of adaptive control for the space robot system against parameter uncertainty, unknown dynamics and unmodeled payload in space applications. We demonstrate that under certain conditions, the entire space robot can be represented as a full-actuated robot system to avoid the inclusion of internal dynamics. Based on the dynamic model, we propose an adaptive control scheme using Cartesian space representation and demonstrate its validity and design procedure by a simulation study.

  • PDF

Fault detection and identification for a robot used in intelligent manufacturing (IMS용 로봇에서의 FDI기법 연구)

  • 이상길;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1489-1492
    • /
    • 1997
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square distribution is applied fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

Development of a 3D graphic simulation tool for SCARA robot (스카라 로봇의 3차원 그래픽 시뮬레이션 툴 개발)

  • 이대영;최재원;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.724-727
    • /
    • 1997
  • In this paper, we developed a Windows 95 version Off-Line Programming System which can simulate a Robot model in 3D Graphic space. 4 axes SCARA Robot (especially FARA SM5)was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the OLP system in the Windows 95's GUI environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

A Learning Controller for Repetitive Gait Control of Biped Walking Robot

  • Kho, Jae-Won;Lim, Dong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1464-1468
    • /
    • 2004
  • This paper presents a learning controller for repetitive gait control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured according to the walking period through the iterative learning, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of learning control to biped robotic motion is shown via dynamic simulation with 12-DOF biped walking robot.

  • PDF