• Title/Summary/Keyword: robot show

Search Result 1,268, Processing Time 0.027 seconds

A Design of Dynamic Simulator of Articulated Robot (다관절 로봇의 동적 시뮬레이터 설계)

  • Park, In-Man;Jung, Seong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2015
  • This study proposes an articulated robot control system using an on/off-line robot graphic simulator with multiple networks. The proposed robot control system consists of a robot simulator using OpenGL, a robot controller based on a DSP(TMS320) motion board, and the server/client communication by multiple networks. Each client can control the real robot through a server and can compare the real robot motion with the virtual robot motion in the simulation. Also, all clients can check and analyze the robot motion simultaneously through the motion image and data of the real robot. In order to show the validity of the presented system, we present an experimental result for a 6-axis vertical articulated robot. The proposed robot control system is useful, especially, in the industrial fields using remote robot control as well as industrial production automation with many clients.

Cleaning Robot Algorithm through Human-Robot Interaction (사람과 로봇의 상호작용을 통한 청소 로봇 알고리즘)

  • Kim, Seung-Yong;Kim, Tae-Hyung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.5
    • /
    • pp.297-305
    • /
    • 2008
  • We present a cleaning robot algorithm that can be implemented on low-cost robot architecture while the cleaning performance far exceeds the conventional random style cleaning through human-robot interaction. We clarify the advantages and disadvantages of the two notable cleaning robot styles: the random and the mapping styles, and show the possibility how we can achieve the performance of the complicated mapping style under the random style-like robot architecture using the idea of human-aided cleaning algorithm. Experimental results are presented to show the performance.

Teleoperation Control of Omni-directional Mobile Robot with Force Feedback (힘 반향 기법을 이용한 전방향 이동 로봇의 원격 제어)

  • Lee, Jeong-Hyeong;Lee, Hyung-Jik;Jung, Seul
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.243-245
    • /
    • 2007
  • This paper presents the implementation of teleoperation control of an omni-direction mobile robot. The master joystick robot has two degrees of freedom to control the movement of the slave mobile robot in the Cartesian space. In addition, the whole teleoperated control system is closed by the force feedback. The operator can feel the contact force as the slave robot makes contact with the environment. Experimental results show that the teleooerated control with force feedback has been successfully implemented.

  • PDF

Design and Control of a Multi-Function and Multi-Joint Robot (다기능 다관절 로봇의 설계 및 제어)

  • Joo Jin-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.166-169
    • /
    • 2004
  • In this paper show how to design a redundant robot which is suitable for the multiple task without any constraints on the workspace. The implementation is possible by the rigid connection of a mobile robot and a task robot. Use a five joint articulated robot as the task robot; designed the 3 joint mobile robot for this usage. For a task execution assigned to the redundant robot, not only the task robot but the mobile robot should work in the coordinated way. therefore, a kinematic connection of the two robots should be cleary represented in a frame. And, also the dynamic interaction between the two robots needs to be analyzed. Clarified these issues considering the control of the redundant robot. Finally, demonstrate away of utilization of the redundancy as the cooperation between the mobile robot and the task robot to execute a common task.

  • PDF

A Simple Learning Variable Structure Control Law for Rigid Robot Manipulators

  • Choi, Han-Ho;Kuc, Tae-Yong;Lee, Dong-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.354-359
    • /
    • 2003
  • In this paper, we consider the problem of designing a simple learning variable structure system for repeatable tracking control of robot manipulators. We combine a variable structure control law as the robust part for stabilization and a feedforward learning law as the intelligent part for nonlinearity compensation. We show that the tracking error asymptotically converges to zero. Finally, we give computer simulation results in order to show the effectiveness of our method.

  • PDF

Mobility-Aware Ad Hoc Routing Protocols for Networking Mobile Robot Teams

  • Das, Saumitra M.;Hu, Y. Charlie;Lee, C.S. George;Lu, Yung-Hsiang
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.296-311
    • /
    • 2007
  • Mobile multi-robot teams are useful in many critical applications such as search and rescue. Explicit communication among robots in such mobile multi-robot teams is useful for the coordination of such teams as well as exchanging data. Since many applications for mobile robots involve scenarios in which communication infrastructure may be damaged or unavailable, mobile robot teams frequently need to communicate with each other via ad hoc networking. In such scenarios, low-overhead and energy-efficient routing protocols for delivering messages among robots are a key requirement. Two important primitives for communication are essential for enabling a wide variety of mobile robot applications. First, unicast communication (between two robots) needs to be provided to enable coordination and data exchange. Second, in many applications, group communication is required for flexible control, organization, and management of the mobile robots. Multicast provides a bandwidth-efficient communication method between a source and a group of robots. In this paper, we first propose and evaluate two unicast routing protocols tailored for use in ad hoc networks formed by mobile multi-robot teams: Mobile robot distance vector (MRDV) and mobile robot source routing (MRSR). Both protocols exploit the unique mobility characteristics of mobile robot networks to perform efficient routing. Our simulation study show that both MRDV and MRSR incur lower overhead while operating in mobile robot networks when compared to traditional mobile ad hoc network routing protocols such as DSR and AODV. We then propose and evaluate an efficient multicast protocol mobile robot mesh multicast (MRMM) for deployment in mobile robot networks. MRMM exploits the fact that mobile robots know what velocity they are instructed to move at and for what distance in building a long lifetime sparse mesh for group communication that is more efficient. Our results show that MRMM provides an efficient group communication mechanism that can potentially be used in many mobile robot application scenarios.

On Design of Visual Servoing using an Uncalibrated Camera in 3D Space

  • Morita, Masahiko;Kenji, Kohiyama;Shigeru, Uchikado;Lili, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1121-1125
    • /
    • 2003
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

Robot Manufacturing Class for Children Led by University Students

  • Ukida, Hiroyuki;Aika, Yuuta;Achi, Keita;Ishihara, Yasuyuki;Kuroda, Jou;Kosaki, Gaku;Suzuki, Syunsuke;Nagata, Yuuki
    • Journal of Engineering Education Research
    • /
    • v.13 no.2
    • /
    • pp.78-82
    • /
    • 2010
  • This paper introduces the Tokushima Robot Programming Club. This is a robot manufacturing class for elementary and junior-high school students. This club is planned and managed by university students. First, we show the organization of our club. And, robot kits and software development systems we use are introduced. And then, we describe the activities of this club and show its educational effectiveness for both the children and the university students.

  • PDF

A Small Humanoid Robot that can Play Golf (소형 인간형 로봇의 골프하기)

  • Kim, Jong-Woo;Cha, Chul;Cho, Dong-Kwon;Sung, Young-Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.374-382
    • /
    • 2007
  • Robot mobility and intelligence become more important for robots to be used in various fields other than automation. The main purpose of providing mobility to a robot is to extend the robot's manipulability. In this paper, we introduce a small humanoid robot that can autonomously play golf as an example of incorporating robot intelligence, mobility, and manipulability. The robot has 12 degrees of freedom for legs and has various basic walking patterns. It can move to a desired position and change orientation by combining the basic waking patterns. The robot has a color CCD camera and can extract coordinates of the objects in the environments. The small humanoid robot has 8 degrees of freedom for arms and can play golf autonomously with two kinds of dexterous swing motions. Kinematic analysis of the robot arms, vision data processing for the recognition of the environments, algorithm for playing robotic golf have been performed or proposed. The experimental results show that the robot can play golf autonomously.

Development of User-Based Robot Simulation using VRML and Open Architecture (VRML 과 개방형구조를 이용한 사용자 기반의 로봇 시뮬레이션 개발)

  • Kim, Chang-Sei;Hong, Keum-Shik;Kim, Soo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1201-1206
    • /
    • 2007
  • Robot simulation technique is essential not only for robot developers to design robotic systems but also for robot operators to predict robot motion, configure system layout, and increase robot ability. However, commercial robot simulation software such as ROBCAD, IGRIP, and so on are expensive and sometimes they are difficult to customize into industrial purpose programming for users. Therefore, user-based simulation programming is required to magnify the efficiency of robot system. In this paper, we show the methodology of developing user-based robot simulation programming using PC(personal computer), Open-Inventor, and Windows Programming. The developed programming has been successfully applied to welding robot systems of a shipbuilding industry. Also, the methodology presented here can be easily extended to simulate manipulators of other typed mechanism on user's PC.

  • PDF