• Title/Summary/Keyword: road pavement

Search Result 1,213, Processing Time 0.027 seconds

Finite Element Analysis for Fracture Resistance of Fiber-reinforced Asphalt Concrete (유한요소해석을 통한 섬유보강 아스팔트의 파괴거동특성 분석)

  • Baek, Jongeun;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.77-83
    • /
    • 2015
  • PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS : A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS : The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.

Optimum Compaction Test of Roller Compacted Concrete Pavement (롤러전압 콘크리트포장의 적정 다짐실험 방안 고찰)

  • Chung, Gun Woo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.27-33
    • /
    • 2015
  • PURPOSES : To ensure appropriate RCC properties with sufficient strength development and workability, it is necessary to secure a proper level of consistency. It is also necessary to secure maximum dry density, which is an important factor for increasing the interaction of aggregate interlocking, leading to an augmentation of RCC strength. On the other hand, the dry density of RCC can be changed owing to the compaction conditions, water content, and particle size distribution. A Proctor test and a modified Proctor test were used for determining the optimum water content needed to achieve maximum dry density with different amounts of compaction energy. A Vebe test, on the other hand, was used for checking the level of consistency, which is important for producing a workable mixture. METHODS : To confirm the degree of compaction at various particle sizes, RCC mixtures with different sand/aggregate ratios were evaluated. The Proctor test and modified Proctor test were applied to these mixtures to check the effect of the aggregate gradation and compaction energy on the maximum dry density and optimum water content. During each test, three specimens were produced for all types of water content under each aggregate gradation. A compaction curve and the optimum water content and maximum dry density for each aggregate gradation were then obtained for both tests. The range of water content for the appropriate consistency of each aggregate gradation was determined through a Vebe test. The optimum water content was then evaluated based on this range. RESULTS : The compaction test results show that the modified Proctor test provides a higher maximum dry density and lower optimum water content compared with the standard Proctor test. For the modified Proctor test, two cases of aggregate gradation (s/a = 30% and 70%) had the optimum water contents outside of the appropriate water content range. For the standard Proctor test, on the other hand, none of aggregate gradations provided the optimum water content within the desired range. CONCLUSIONS : The modified Proctor test should be used for an RCC mixture design because it can provide adequacy between maximum dry density and consistency. Moreover, the compaction roller has become highly developed for higher compaction energy.

The Characteristics of Vehicle Speed Violation in School Zones (어린이 보호구역에서의 차량 속도위반 특성 분석)

  • Park, Jae-Young;Kim, Do-Gyeong
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • Since speed limit enforcement in school zones is the most important to reduce the occurrence of severe child related accidents, school zones typically have a speed limit of 30km/h. However, it is found that the majority of vehicles passing school zones are traveling over 30km/h. This indicates that school zones are not being effectively operated to achieve the main objective which is the reduction of child related accidents. This study aims to identify the factors affecting the violation of speed limits in school zones through the results of field survey from 8 elementary schools. The results showed that time period, the number of lanes, the width of sidewalks, and the status of colored pavement were found to be highly associated with the violation of speed limits in school zones at the 95% significance level. The results of this study may provide some insights for making safe environments around schools.

Methodologies to Develop Payment Adjustment Regulations for Quality Control and Assurance of Concrete Pavements (콘크리트 도로 포장의 품질 관리 및 보증을 위한 지불규정 개발 기법)

  • Kim, Seong-Min;Rhee, Suk-Keun;Seo, Bong-Kyo
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.179-188
    • /
    • 2008
  • This study was performed as part of the development of the payment adjustment regulations for ensuring high performance of concrete pavements. The objectives of this study were to develop the reasonable quality measurement approaches for the implementation of the payment adjustment regulations and to propose the methods to determine the quality dependent pay factors. First, by using the statistics the slab thickness measurement data was analyzed and the methods to determine the allowable measurement errors, the proper measurement spacing, and the selection of the measurement location were proposed. In addition, to suggest the reasonable methods to determine the pay factors, by using the data of the slab thickness and concrete flexural strength, the pay factors based on the PWL(Percent Within Limits) method used in the USA were compared with those obtained considering the normal probability distribution and t distribution. Finally, the most appropriate method to determine the pay factors was proposed.

  • PDF

Application of Modified Ramberg-Osgood Model for Master Curve of Asphalt Concrete (아스팔트 콘크리트 메스터 극선에 대한 수정 Ramberg-Osgood 모델 적용)

  • Kweon, Gi-Chul
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 2008
  • The dynamic moduli of asphalt concrete are very important for the analysis and the design of asphalt pavement systems. The dynamic modulus master curve is usually represented by a sigmoidal function. The Ramberg-Osgood model was widely used for fitting of normalized modulus reduction curves with strain of soils in soil dynamic fields. The master curves were obtained by both sigmoidal functions and modified Ramberg-Osgood model for the same dynamic modulus data set, the fitting abilities of both methods were excellent. The coefficients in sigmoidal function are coupled. Therefore, it is not possible to separate the characteristics of the master curve with absolute value and shape. However, the each fitting coefficient in the Ramberg-Osgood model has a unique effect on the master curve, and the coefficients are not coupled with each other.

  • PDF

Study on Critical Impact Point for a SB2 Class Flexible Barrier (SB2등급 연성베리어의 충돌지점(CIP)에 대한 연구)

  • Heo, Yeon Hee;Kim, Yong Guk;Ko, Man Gi;Kim, Kee Dong
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.127-133
    • /
    • 2013
  • PURPOSES : The impact performance of flexible barrier system such as structural response, vehicular motion and occupant safety vary depending on the impact point. Thus, to properly evaluate the performance of a flexible barrier system, impact should be made to a point which will lead to the worst possible results. This point is called the Critical Impact Point (CIP). This paper presents the way to determine the CIP for a SB2 class flexible barrier system which is consisted of Thrie-Beam rail and circular hollow tube post of 2m span. METHODS: Barrier VII simulations were made for impact points; Case 1 at a post, Case 2 at 1/3 span downstream from a post, Case 3 at middle of the span, Case 4 at 2/3 span downstream from a post. For the structural performance (deflections), impact simulation of 8000kg-65km/h-15degree was used, and for vehicle motion and occupant safety, simulation of 1300kg-80km/h-20degree impact was made and analysed. RESULTS: Case 1 gave the largest dynamic deflection of 75.72cm and also gave the largest snag value of 44.3cm. Occupant safety and exit angle of the vehicle after the impact were not sensitive to the impact point and were all below the allowable limit. CONCLUSIONS : For the SB2 class flexible barrier system's CIP can be regarded as a post which is sufficiently away from the end of Length of Need in order to avoid the end-effect of the barrier system. It can be more economic in the long run because the normal concrete pavement material is likely to cost more due to higher probability of maintenance and repair and higher social cost due to traffic accident, etc.

Feasibility Study of AASHTO86 Design Method for Bonded Concrete Overlay (AASHTO86 접착식 콘크리트 덧씌우기 설계법의 타당성 연구)

  • Park, Jong Won;Kim, Young Kyu;Han, Seung Hwan;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.47-55
    • /
    • 2013
  • PURPOSES : This study aimed to evaluate the feasibility of AASHTO86 design method for Bonded Concrete Overlay. METHODS : The Feasibility of AASHTO86 design method for Bonded Concrete Overlay is investigated based on the following study : i) Sensitivity analysis of designed service life of Bonded Concrete Overlay by major design input for AASHTO86 guide. ii) Comparison of actual Bonded Concrete Overlay life and predicted Bonded Concrete Overlay life by AASHTO86. iii) Finding the stress component influence the potential distress of Bonded Concrete Overlay based on 3-d FEM analysis. iv) Exploring the limitation of AASHTO86 in the aspect of design input. RESULTS : Sensitivity analysis showed that the condition of existing pavement significantly on the Bonded Concrete Overlay life. Also the overlay thickness affect the Bonded Concrete Overlay life. The comparison of actual Bonded Concrete Overlay life and predicted Bonded Concrete Overlay life showed relatively good agreement when the early distress sections are excluded in comparison. Bonding stress occurred at the interface may be larger than the bond strength used in the specification of Bonded Concrete Overlay construction. CONCLUSIONS : Bonded Concrete Overlay life predicted by the AASHTO86 may not be reliable. Number of points to improve the reliability in the design of Bonded Concrete Overlay are suggested in this study.

Development and Performance Evaluation of Liquid-type Chemical Additive for Warm-Mix Asphalt (중온화 액상형 화학첨가제 개발과 이를 적용한 중온 아스팔트의 성능 평가)

  • Baek, Cheolmin;Yang, Sunglin;Hwang, Sungdo
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.107-116
    • /
    • 2013
  • PURPOSES: The liquid-type chemical warm-mix asphalt (WMA) additive has been developed. This study evaluates the basic properties of the additive and the mechanical properties of WMA asphalt and mixture manufactured by using the newly developed chemical additive. METHODS: First, the newly developed WMA additive was applied to the original asphalt by various composition of additive components and dosage ratio of additive. These WMA asphalt binders were evaluated in terms of penetration, softening point, rotational viscosity, and PG grade. Based on the binder test results, one best candidate was chosen to apply to the mixture and then the mechanical properties of WMA mixture were evaluated for moisture susceptibility, dynamic modulus, and rutting and fatigue resistance. RESULTS : According to the binder test, WMA asphalt binders showed the similar properties to the original asphalt binder except the penetraion index of WMA additive was a little higher than original binder. From the Superpave mix design, the optimum asphalt content and volumetric properties of WMA mixture were almost the same with those of hot mix asphalt (HMA) mixture even though the production and compaction temperatures were $30^{\circ}C$ lower for the WMA mixture. From the first set of performance evaluation, it was found that the WMA mixture would have some problem in moisture susceptibility. The additive was modified to improve the resistance to moisture and the second set of performance evaluation showed that the WMA mixture with modified chemical additive would have the similar performance to HMA mixture. CONCLUSIONS : Based on the various laboratory tests, it was concluded that the newly developed chemical WMA additve could be successfully used to produce the WMA mixture with the comparable performance to the HMA mixture. These laboratory evaluations should be confirmed by applying this additive to the field and monitoring the long-term performance of the pavement, which are scheduled in the near future.

Effect of Physical Characteristics of Emulsion Asphalt and Aggregate on Performance of Chip Seal Pavements (유화아스팔트 바인더와 골재 특성이 칩씰 포장의 공용성에 미치는 영향 연구)

  • Hong, Ki Yun;Kim, Tae Woo;Lee, Hyun Jong;Park, Hee Mun;Ham, Sang Min
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the effect of physical characteristics of emulsion asphalt and aggregate on performance of chip seal pavements. METHODS : In order to evaluate the performance of chip seal materials, the sweep tests and Vialit Plate Shock tests were conducted on the mixtures with five emulsion asphalt binders and three aggregate types. The sweep tests was intended to investigate the change of bonding properties between emulsion asphalt and aggregate with curing time. The Vialit Plate Shock test was used to evaluate the bonding properties of chip seal materials at low temperatures. RESULTS : Results from sweep tests showed that polymer modified emulsion asphalt can reduce the curing time by 1.5 hour comparing with typical emulsion asphalt. It is also found that the Flakiness Index of aggregates and absorption rate of binder are the major factors affecting the bonding properties of chip seal materials. The Vialit Plate Shock test results showed that the average aggregate loss of CRS-2 is ten times higher than CRS-2P No.2 indicating that the use of polymer additives in emulsion asphalt can improve the performance of chip seal materials in low temperature region. CONCLUSIONS : The use of polymer in emulsion asphalt can decrease the curing time of chip seal materials and increase the bonding properties between aggregates and asphalt binder. It is also concluded that the lower Flakiness Index and absorption rate of aggregates can improve the performance of chip seal pavement.

Development of the Work Information Management System of Pavement Crack Sealing (도로면 크랙실링 작업정보 수집 관리시스템 개발)

  • Byun, Woong-Ho;Oh, Se-Wook;Lee, Hyun-Jung;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.5
    • /
    • pp.80-91
    • /
    • 2007
  • Crack in Pavements have been continually increased a by water penetration Therefore, the cracks can result in deterioration of the pavements that could be extremely dangerous fro road users. Creak sealing work performed in outdoor is very dangerous, costly and labor intensive. To slove these problems, automated crack sealing systems have been developed. it Would be needed that work information related to crack sealing must be gathered in an effort to used for existing or future crack sealing work. Furthermore, work information related to crack sealing could be utilized in analyzing work productivity and condition. The primary objective of this study is to propose a PDA and Web-based system for work information management of crack sealing which enables to effectively interchange work information between head office and fields, and to accurately collect work information. Finally, it is anticipated that the effective use of the developed PDA and web-based system would be able to effectively share work Information, measure productivity, estimate costs as well as plan future work schedule.