• Title/Summary/Keyword: road image

Search Result 736, Processing Time 0.031 seconds

Development of Road-Following Controller for Autonomous Vehicle using Relative Similarity Modular Network (상대분할 신경회로망에 의한 자율주행차량 도로추적 제어기의 개발)

  • Ryoo, Young-Jae;Lim, Young-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.550-557
    • /
    • 1999
  • This paper describes a road-following controller using the proposed neural network for autonomous vehicle. Road-following with visual sensor like camera requires intelligent control algorithm because analysis of relation from road image to steering control is complex. The proposed neural network, relative similarity modular network(RSMN), is composed of some learning networks and a partitioniing network. The partitioning network divides input space into multiple sections by similarity of input data. Because divided section has simlar input patterns, RSMN can learn nonlinear relation such as road-following with visual control easily. Visual control uses two criteria on road image from camera; one is position of vanishing point of road, the other is slope of vanishing line of road. The controller using neural network has input of two criteria and output of steering angle. To confirm performance of the proposed neural network controller, a software is developed to simulate vehicle dynamics, camera image generation, visual control, and road-following. Also, prototype autonomous electric vehicle is developed, and usefulness of the controller is verified by physical driving test.

  • PDF

Designation of a Road in Urban Area Using Rough Transform

  • Kim, Joon-Cheol;Park, Sung-Mo;Lee, Joon-whoan;Jeong, Soo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.766-771
    • /
    • 2002
  • Automatic change detection based on the vector-to-raster comparison is hard especially in high-resolution image. This paper proposes a method to designate roads in high-resolution image in sequential manner using the information from vector map in which Hough transform is used for reliability. By its linearity, the road of urban areas in a vector map can be easily parameterized. Following some pre-processing to remove undesirable objects, we obtain the edge map of raster image. Then the edge map is transformed to a parameter space to find the selected road from vector map. The comparison is done in the parameter space to find the best matching. The set of parameters of a road from vector map is treated as the constraints to do matching. After designating the road, we may overlay it on the raster image for precise monitoring. The results can be used for detection of changes in road object in a semi-automatic fashion.

  • PDF

The estimation of camera calibration parameters using the properties of vanishing point at the paved and unpaved road (무한원점의 성질을 이용한 포장 및 비포장 도로에서의 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Jeong, Myeong-Hee;Rho, Do-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.178-180
    • /
    • 2006
  • In general, camera calibration has to be gone ahead necessarily to estimate a position and an orientation of the object exactly using a camera. Autonomous land system in order to run a vehicle autonomously needs a camera calibration method appling a camera and various road environment. Camera calibration is to prescribe the confrontation relation between third dimension space and the image plane. It means to find camera calibration parameters. Camera calibration parameters using the paved road and the unpaved road are estimated. The proposed algorithm has been detected through the image processing after obtaining the paved road and the unpaved road. There is able to detect easily edges because the road lanes exist in the raved road. Image processing method is two. One is a method on the paved road. Image is segmentalized using open, dilation, and erosion. The other is a method on the unpaved road. Edges are detected using blur and sharpening. So it has been made use of Hough transformation in order to detect the correct straight line because it has less error than least-square method. In addition to, this thesis has been used vanishing point' principle. an algorithm suggests camera calibration method using Hough transformation and vanishing point. When the algorithm was applied, the result of focal length was about 10.7[mm] and RMS errors of rotation were 0.10913 and 0.11476 ranges. these have the stabilized ranges comparatively. This shows that this algorithm can be applied to camera calibration on the raved and unpaved road.

  • PDF

STABLE AUTONOMOUS DRIVING METHOD USING MODIFIED OTSU ALGORITHM

  • Lee, D.E.;Yoo, S.H.;Kim, Y.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.227-235
    • /
    • 2006
  • In this paper a robust image processing method with modified Otsu algorithm to recognize the road lane for a real-time controlled autonomous vehicle is presented. The main objective of a proposed method is to drive an autonomous vehicle safely irrespective of road image qualities. For the steering of real-time controlled autonomous vehicle, a detection area is predefined by lane segment, with previously obtained frame data, and the edges are detected on the basis of a lane width. For stable as well as psudo-robust autonomous driving with "good", "shady" or even "bad" road profiles, the variable threshold with modified Otsu algorithm in the image histogram, is utilized to obtain a binary image from each frame. Also Hough transform is utilized to extract the lane segment. Whether the image is "good", "shady" or "bad", always robust and reliable edges are obtained from the algorithms applied in this paper in a real-time basis. For verifying the adaptability of the proposed algorithm, a miniature vehicle with a camera is constructed and tested with various road conditions. Also, various highway road images are analyzed with proposed algorithm to prove its usefulness.

Gradation Image Processing for Text Recognition in Road Signs Using Image Division and Merging

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.27-33
    • /
    • 2014
  • This paper proposes a gradation image processing method for the development of a Road Sign Recognition Platform (RReP), which aims to facilitate the rapid and accurate management and surveying of approximately 160,000 road signs installed along the highways, national roadways, and local roads in the cities, districts (gun), and provinces (do) of Korea. RReP is based on GPS(Global Positioning System), IMU(Inertial Measurement Unit), INS(Inertial Navigation System), DMI(Distance Measurement Instrument), and lasers, and uses an imagery information collection/classification module to allow the automatic recognition of signs, the collection of shapes, pole locations, and sign-type data, and the creation of road sign registers, by extracting basic data related to the shape and sign content, and automated database design. Image division and merging, which were applied in this study, produce superior results compared with local binarization method in terms of speed. At the results, larger texts area were found in images, the accuracy of text recognition was improved when images had been gradated. Multi-threshold values of natural scene images are used to improve the extraction rate of texts and figures based on pattern recognition.

A FUZZY NEURAL NETWORK-BASED DECISION OF ROAD IMAGE QUALITY FOR THE EXTRACTION OF LANE-RELATED INFORMATION

  • YI U. K.;LEE J. W.;BAEK K. R.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions, and obtained successful decision-making about $99\%$ of the time.

A Study on the Implement of Image Recognition the Road Traffic Safety Information Board using Nearest Neighborhood Decision Making Algorithm (최근접 이웃 결정방법 알고리즘을 이용한 도로교통안전표지판 영상인식의 구현)

  • Jung Jin-Yong;Kim Dong-Hyun;Lee So-Haeng
    • Management & Information Systems Review
    • /
    • v.4
    • /
    • pp.257-284
    • /
    • 2000
  • According as the drivers increase who have their cars, the comprehensive studies on the automobile for the traffic safety have been raised as the important problems. Visual Recognition System for radio-controled driving is a part of the sensor processor of Unmanned Autonomous Vehicle System. When a driver drives his car on an unknown highway or general road, it produces a model from the successively inputted road traffic information. The suggested Recognition System of the Road Traffic Safety Information Board is to recognize and distinguish automatically a Road Traffic Safety Information Board as one of road traffic information. The whole processes of Recognition System of the Road Traffic Safety Information Board suggested in this study are as follows. We took the photographs of Road Traffic Safety Information Board with a digital camera in order to get an image and normalize bitmap image file with a size of $200{\times}200$ byte with Photo Shop 5.0. The existing True Color is made up the color data of sixteen million kinds. We changed it with 256 Color, because it has large capacity, and spend much time on calculating. We have practiced works of 30 times with erosion and dilation algorithm to remove unnecessary images. We drawing out original image with the Region Splitting Technique as a kind of segmentation. We made three kinds of grouping(Attention Information Board, Prohibit Information Board, and Introduction Information Board) by RYB( Red, Yellow, Blue) color segmentation. We minimized the image size of board, direction, and the influence of rounding. We also minimized the Influence according to position. and the brightness of light and darkness with Eigen Vector and Eigen Value. The data sampling this feature value appeared after building the learning Code Book Database. The suggested Recognition System of the Road Traffic Safety Information Board firstly distinguished three kinds of groups in the database of learning Code Book, and suggested in order to recognize after comparing and judging the board want to recognize within the same group with Nearest Neighborhood Decision Making.

  • PDF

Detection of Roads Information and the Accuracy Analysis from IKONOS Satellite Image Data (IKONOS 위성 영상데이터로부터 도로정보의 판독과 그 정확도 분석)

  • 안기원;김상철;신석효
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.235-242
    • /
    • 2002
  • This study is focused on the analysis of road extracting accuracy from the high resolution IKONOS satellite image data. A geometric correction of the image is performed using the RFM and interpretation with the screen digitizing is also performed for extracting the roads information. For the evaluation of road extracting accuracy, the road locations and the road widths are compared with the national digital map. The comparison results shows that the road boundary and the size of road width are able to extract with the geometric accuracy of $\pm$3.4m and $\pm$1.1m.

A Road Extraction Algorithm using Mean-Shift Segmentation and Connected-Component (평균이동분할과 연결요소를 이용한 도로추출 알고리즘)

  • Lee, Tae-Hee;Hwang, Bo-Hyun;Yun, Jong-Ho;Park, Byoung-Soo;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.359-364
    • /
    • 2014
  • In this paper, we propose a method for extracting a road area by using the mean-shift method and connected-component method. Mean-shift method is very effective to divide the color image by the method of non-parametric statistics to find the center mode. Generally, the feature points of road are extracted by using the information located in the middle and bottom of the road image. And it is possible to extract a road region by using this feature-point and the partitioned color image. However, if a road region is extracted with only the color information and the position information of a road image, it is possible to detect not only noise but also off-road regions. This paper proposes the method to determine the road region by eliminating the noise with the closing / opening operation of the morphology, and by extracting only the portion of the largest area using a connected-components method. The proposed method is simulated and verified by applying the captured road images.

A Study On The Optimum Road Design in Jeju Island Using Digital Photogrammetry and GSIS (수치사진측량과 GSIS를 이용한 최적노선선정에 관한 연구)

  • 권혁춘;이병걸
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.519-522
    • /
    • 2004
  • The purpose of this research is to design a road using digital photogrammatry method to generate DEM(digital elevation model) and digital ortho image based on GSIS which was applied to the road simulation. The example study area was the suburbs of Jeju city. To this study, 1/5,000 digital map and GSIS technique were used for optimum road design of the island based on Arc View software. Using this software we can Set an overlay map by combination of hill shade map, slope map, aspect map, and building buffer map. Based on this overlap map, we designed the best road line and along this line we performed three dimensional road simulation using Microstation CAD and Inroads road design programs. From the results, we found that the DEM and digital ortho image acquired from stereoairphoto using digital photogrammatry was satisfied for choosing the best roadline and the developed three dimensional road simulation technique using GSIS technique was very useful to estimate the reasonable road design before the real road construction works.

  • PDF