• Title/Summary/Keyword: road freezing

Search Result 150, Processing Time 0.019 seconds

An Experimental Study on Evaluation Methods for Scaling Resistance of Cement Concrete Pavement (시멘트 콘크리트 포장의 스케일링 저항성 평가방법에 관한 실험적 연구)

  • Lee, Hyeon-Gi;Oh, Hong-Seob;Sim, Jong-Sung;Shim, Jae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.30-38
    • /
    • 2015
  • In cold-climate regions, deicing agents is used for smooth traffic on the road due to freezing and snowdrift in winter. The use of de-icing salts has resulted in the accelerated scaling damage of concrete with salt damage under freezing and thawing condition. Scaling is the deterioration of concrete where in the paste-mortar structure delaminates in flakes from the surface of the concrete. Due to such damage, concrete pavement causes various problems such as early deterioration according to the decrease in the thickness of cover concrete and user's stability issues. Accordingly, various tests and evaluation methods have been suggested in order to evaluate these phenomena in other countries. However, there have been no regulations for the evaluation method in South Korea, and related studies are also very rare. Therefore, in this study, the evaluation methods proposed by each institution and country were investigated and the experiments were performed according to each regulation, followed by the comparison and analysis of the results. Furthermore, this study aims to suggest the optimized experimental method adopted to domestic field through the discussion of such experimental methods and results.

Experimental Study on Correlation Analysis of Air-void, Air-spacing factor and Long-term Durability for Roller-compacted Concrete pavement (롤러 전압 콘크리트 포장의 공기량 및 기포간격계수와 장기 내구성의 상관관계 분석을 위한 실험적 연구)

  • Lee, Jun Hee;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2016
  • PURPOSES : The use of roller-compacted concrete pavement (RCCP) is an environmentally friendly method of construction that utilizes the aggregate interlock effect by means of a hydration reaction and roller compacting, demonstrating a superb structural performance with a relatively small unit water content and unit cement content. However, even if an excellent structural performance was secured through a previous study, the verification research on the environmental load and long-term durability was conducted under unsatisfactory conditions. In order to secure longterm durability, the construction of an appropriate internal air-void structure is required. In this study, a method of improving the long-term durability of RCCP will be suggested by analyzing the internal air-void structure and relevant durability of roller-compacted concrete. METHODS : The method of improving the long-term durability involves measurements of the air content, air voids, and air-spacing factor in RCCP that experiences a change in terms of the kind of air-entraining agent and chemical admixture proportions. This test should be conducted on the basis of test criteria such as ASTM C 457, 672, and KS F 2456. RESULTS : Freezing, thawing, and scaling resistance tests of roller compacted concrete without a chemical admixture showed that it was weak. However, as a result of conducting air entraining (AE) with an AE agent, a large amount of air was distributed with a range of 2~3%, and an air void spacing factor ranging from 200 to $300{\mu}m$ (close to $250{\mu}m$) coming from PCA was secured. Accordingly, the freezing and thawing resistance was improved, with a relative dynamic elastic modulus of more than 80%, and the scaling resistance was improved under the appropriate AE agent content rate. CONCLUSIONS : The long-term durability of RCCP has a direct relationship with the air-void spacing factor, and it can be secured only by ensuring the air void spacing factor through air entraining with the inclusion of an AE agent.

Predicting Road Surface Temperature using Solar Radiation Data from SOLWEIG(SOlar and LongWave Environmental Irradiance Geometry-model): Focused on Naebu Expressway in Seoul (태양복사모델(SOLWEIG)의 복사플럭스 자료를 활용한 노면온도 예측: 서울시 내부순환로 대상)

  • AHN, Suk-Hee;KWON, Hyuk-Gi;YANG, Ho-Jin;LEE, Geun-Hee;YI, Chae-Yeon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.156-172
    • /
    • 2020
  • The purpose of this study was to predict road surface temperature using high-resolution solar radiation data. The road surface temperature prediction model (RSTPM) was applied to predict road surface temperature; this model was developed based on the heat-balance method. In addition, using SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry-model), the shadow patterns caused by the terrain effects were analyzed, and high-resolution solar radiation data with 10 m spatial resolution were calculated. To increase the accuracy of the shadow patterns and solar radiation, the day that was modeled had minimal effects from fog, clouds, and precipitation. As a result, shadow areas lasted for a long time at the entrance and exit of a tunnel, and in a high-altitude area. Furthermore, solar radiation clearly decreased in areas affected by shadows, which was reflected in the predicted road surface temperatures. It was confirmed that the road surface temperature should be high at topographically open points and relatively low at higher altitude points. The results of this study could be used to forecast the freezing of sections of road surfaces in winter, and to inform decision making by road managers and drivers.

Analysis of Dowel Bar Placement Accuracy with Construction Methods (시공방법에 따른 다웰바 시공상태 분석)

  • Lee, Jae-Hoon;Kim, Hyung-Bae;Kwon, Soon-Min;Kwon, Ou-Sun
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.101-114
    • /
    • 2007
  • Dowel bars in the jointed concrete pavement are used to both provide load transfer across pavements joints and prevent the joint faulting leading to longer service life. On the contrary, the misplacement of dowel bar can provide negative results including the joint freezing(locking) that may cause the joint spatting and unexpected mid-slab cracking. The dowel bar can be placed using the assembly or dowel bar inserter (DBI) during the concrete pavement construction. In the domestic practice of the concrete pavement construction, the dowel bar is placed using the assembly method. This study primarily focuses on the comparison of these two dowel placement methods using the field data from the KHC test road in which both dowel placement methods have been applied to a certain length of the concrete pavement. The field data regarding the alignment of the dowel bars placed by both methods was collected using MIT-SCAN2, a nondestructive measuring equipment, and processed to compute Joint Score and Running Ave. Joint Score which are used as indicators of the dowel bar performance. The comparison of the methods for the dowel bar placement using these indicators shows that the DBI method provided much better alignment of the dowel bars reducing the risk of joint freezing than the assembly method. In order to improve the quality of the dowel bar placement using the assembly method, the current weak points of the assembly method including the fabrication, storage, and installation of dowel bar assembly were investigated and the solution was suggested. The improved dowel bar sets based on the suggested solution have been applied to an actual practice of the concrete pavement construction. The field data shows that the improved assembly method suggested in this study can highly reduce the risk of joint freezing.

  • PDF

A study on the design of tunnel lining insulation based on measurement of temperature in tunnel (터널 온도계측을 통한 라이닝 단열 설계에 관한 연구)

  • Kim, Dea-Young;Lee, Hong-Sung;Sim, Bo-Kyoung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.319-345
    • /
    • 2011
  • In case of tunnels in cold regions, a freeze of groundwater around tunnel may act as a barrier of tunnel drainage in winter, or may cause the inner extrusion of lining. In spite of that, a design of insulation for preventing the frost damage of tunnel lining has not been introduced in Korea, while foreign countries such as Norway and so on have a standard on insulation. In this study, a few freezing cases of road tunnels have been reviewed, and the results show that the freezing protection is necessary. In order to characterize the thermal distribution in the tunnel, following measurements have been performed at Hwa-ak tunnel; the temperature distribution by longitudinal lengths, the internal temperature of lining and the temperature distribution of the ground under pavement. From these measurements, the characteristics of the tunnel's internal temperature distribution due to temperature change in the air has been analyzed. Based on the measurement results on the temperature distribution at Hwa-ak tunnel, thermal flow tests on the rock specimen with and without insulation have been performed in the artificial climate chamber to investigate the performance of the insulation. Also, a number of 3D numerical analyses have been performed to propose appropriate insulation and insulation thicknesses for different conditions, which could prevent the frost damage of tunnel lining. As a result of the numerical analysis, air freezing index of 291$^{\circ}C{\cdot}$ Hr has been suggested as the threshold value for freezing criteria of groundwater behind the tunnel lining.

Information Transfer Method of Dangerous Road Condition (도로 위험 상황의 전송 방법)

  • An, Soo-Jin;Kim, Young-Wook;Han, Min-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.189-197
    • /
    • 2007
  • Developed safety system which transfers danger information to rear cars for accident prevention when drivers detect a accident, a dropping or a freezing during driving on the high way. To prevent an accident, each vehicles mount OBU which is made up of a GPS unit and a transmitter-receiver and the trace of road is always renewed and saved in OBU per a regular past distance. When the driver see dangerous situation, transfer a danger pattern and a trace information by pressing button. All cars which receive information compare the received data with the original data. And then, only cars which are located at the rear in a regular distance respond and occur a warning. Performed a road test at the rate of $30{\sim}50$ kilometer a hour using two test cars which saved about 120meter's space between them were mounted OBU which had 447Mhz transceiver. As a result of the experiment, communication between test cars had no problem. Accordingly, it can use a safety driving device because driver can notice a danger situation and set themselves ready for it using this system in advance.

  • PDF

A study on freeze-thaw evaluation criteria for road tunnels considering climate characteristics (국내 기후특성을 고려한 도로터널의 동결-융해 평가기준 연구)

  • Moon, Joon-Shik;An, Jai-Wook;Kim, Hong-Kyoon;Lee, Jong-Gun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.121-133
    • /
    • 2020
  • Globally, the frequency and intensity of abnormal climate events are increasing. Since this can directly damage lives and property, it is important to establish and implement an appropriate maintenance strategy in response to abnormal weather. Facilities built in cold regions where cold wave or heavy snow occurs frequently can be more damaged by freeze-thaw than facilities located in other regions. However, there are no clear criteria for quantitatively identifying the damage of freeze-thaw and how to cope with it. Therefore, based on the results of indoor freezing tests, the freezing conditions considering regional climate characteristics were selected as one day at -14℃, two days at -7℃ or three days at -5℃. As a result, it was confirmed that they were in the freeze-thaw environment in order of Daegwallyeing (8.3 times), Cheorwon (5.3 times) and Taebeak (4.9 times) in Gangwon region. Through this study, the evaluation criteria of freeze-thaw of road tunnels were newly proposed. The freeze-thaw evaluation criteria of the road tunnel presented in this study can be used for the quantitative evaluation and maintenance strategy of tunnels in cold regions.

Durability and Strength of Dense Grate Permeable Concrete Using Silica sand and Flexible Alkyd Resin (유변성(油變性) 알키드 수지(樹脂)와 규사(硅砂)를 사용(使用)한 밀입도(密粒度) 투수(透水)콘크리트의 강도(强度) 및 내구특성(耐久特性))

  • Kim, In-Jung;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.36-42
    • /
    • 2010
  • Researches on resources recycling in the field of construction have made an extensive progress such as recycled aggregate of waste concrete and recycling of asphalt. On the other hand, there are almost never researches on pavement method with used waste frying oil. In South Korea, 0.2 million ton used waste frying oil is discharged every year. It is guessed that about 0.1 million ton used waste frying oil can be collected. If used waste frying oil is recycled, it is expected that disuse cost will be reduced and water pollution of rivers will be prevented. Therefore, the purpose of the study was to evaluate on mechanical features (strength, water resistance, chemical resistance, abrasion resistance, freezing and thawing resistance and permeable coefficient) whether dense graded permeable concrete mixing silica sand with flexible alkyd resin manufactured by making ester reaction with collected used waste frying oil to make alkyd resin could be applied to road pavement for non-roadway. The results of the study were as follows. In flexural strength, it had 1.6 times as much as road design standard 4.5MPa. In water resistance, chemistry resistance and freezing and thawing resistance, they had lack of strength in early age. As age went by, they didn't have large changes. And curing temperature had phenomenon of increase in strength at rather low temperature than high temperature by glass transition temperature of resin. Therefore, considering workability, strength and durability when it was applied to road pavement, it was reasonable that the mixing ratio of flexible alkyd resin was 10~15% in comparison with silica sand weight.

A Numerical Analysis on the Characteristics of Frost Heaving at Road Pavement in Korea (국내 도로포장의 동상 특성에 대한 수치해석적 연구)

  • Kweon, Gi-Chul;Oh, Se-Boong;Kim, Hyung-Bae;Choi, Chang-Gyu
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.37-47
    • /
    • 2003
  • The basic study was performed on the mechanical analysis of frost and heave using program FROST by CRREL, U.S. army corps of engineers. The characteristics of frost heaving in pavement was analyzed by considering climate, pavement sections and subgrade soil conditions in Korea. Water tables were located at the depth of 0.35m, 2m and 3.35m from subgrade. Inputs were evaluated inevitably from the existing references. As a result frost heave and depth were evaluated with respect time. Maximum frost heave decreased lowering the water table and maximum frost depth was less than 15cm from subgrade. Frost action did not affect seriously on the analysis sections.

  • PDF

Road Environment Black Ice Detection Limits Using a Single LIDAR Sensor (단일 라이다 센서를 이용한 도로환경 블랙아이스 검출 한계)

  • Sung-Tae Kim;Won-Hyuck Choi;Je-Hong Park;Seok-Min Hong;Yeong-Geun Lim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.865-870
    • /
    • 2023
  • Recently, accidents caused by black ice, a road freezing phenomenon caused by natural power, are increasing. Black ice is difficult to identify directly with the human eye and is more likely to misunderstand it as standing water, so there is a high accident rate caused by car sliding. To solve this problem, this paper presents a method of detecting black ice centered on LiDAR sensors. With a small, inexpensive, and high-accuracy light detection and ranging (LiDAR) sensor, the temperature and inclination angle are set differently to detect black ice and asphalt by setting different reflection angles of asphalt and black ice differently in temperatures and inclinations. The LIDARO carried out in the study points out that additional research and improvement are needed to increase accuracy, and through this, more reliable black ice detection methods can be suggested. This method suggests a method of detecting black ice through early system design research by preventing accidents caused by black ice in advance.