• Title/Summary/Keyword: road feature information

Search Result 125, Processing Time 0.025 seconds

B-snake Based Lane Detection with Feature Merging and Extrinsic Camera Parameter Estimation (특징점 병합과 카메라 외부 파라미터 추정 결과를 고려한 B-snake기반 차선 검출)

  • Ha, Sangheon;Kim, Gyeonghwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.215-224
    • /
    • 2013
  • This paper proposes a robust lane detection algorithm for bumpy or slope changing roads by estimating extrinsic camera parameters, which represent the pose of the camera mounted on the car. The proposed algorithm assumes that two lanes are parallel with the predefined width. The lane detection and the extrinsic camera parameter estimation are performed simultaneously by utilizing B-snake in motion compensated and merged feature map with consecutive sequences. The experimental results show the robustness of the proposed algorithm in various road environments. Furthermore, the accuracy of extrinsic camera parameter estimation is evaluated by calculating the distance to a preceding car with the estimated parameters and comparing to the radar-measured distance.

Quality Test and Control of Kinematic DGPS Survey Results

  • Lim, Sam-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.75-80
    • /
    • 2002
  • Depending upon geographical features and surrounding errors in the survey field, inaccurate positioning is inevitable in a kinematic DGPs survey. Therefore, a data inaccuracy detection algorithm and an interpolation algorithm are essential to meet the requirement of a digital map. In this study, GPS characteristics are taken into account to develop the data inaccuracy detection algorithm. Then, the data interpolation algothim is obtained, based on the feature type of the survey. A digital map for 20km of a rural highway is produced by the kinematic DGPS survey and the features of interests are lines associated with the road. Since the vertical variation of GPS data is relatively higher, the trimmed mean of vertical variation is used as criteria of the inaccuracy detection. Four cases of 0.5%, 1%, 2.5% and 5% trimmings have been experimented. Criteria of four cases are 69cm, 65cm, 61cm and 42cm, respectively. For the feature of a curved line, cublic spine interpolation is used to correct the inaccurate data. When the feature is more or less a straight line, the interpolation has been done by a linear polynomial. Difference between the actual distance and the interpolated distance are few centimeters in RMS.

  • PDF

Clustering Algorithm with using Road Side Unit(RSU) for Cluster Head(CH) Selection in VANET (차량 네트워크 환경에서 도로 기반 시설을 이용한 클러스터 헤드 선택 알고리즘)

  • Kwon, Hyuk-joon;Kwon, Yong-ho;Rhee, Byung-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.620-623
    • /
    • 2014
  • Network topology for communication between vehicles are quickly changing because vehicles have a special movement pattern, especially character which is quickly changed by velocity and situation of road. Because of these feature, it is not easy to apply reliable routing on VANET(Vehicular Ad-hoc Network). Clustering method is one of the alternatives which are suggested for overcoming weakness of routing algorithm. Clustering is the way to communicate and manage vehicles by binding them around cluster head. Therefore choosing certain cluster head among vehicles has a decisive effect on decreasing overhead in relevant clustering and determining stability and efficiency of the network. This paper introduces new cluster head selection algorithm using RSU(Road Side Unit) different from existing algorithms. We suggest a more stable and efficient algorithm which decides a priority of cluster head by calculating vehicles' velocity and distance through RSU than existing algorithms.

  • PDF

Fuzzy Neural Network-Based Noisiness Decision of Road Scene for Lane Detection (퍼지신경망을 이용한 도로 씬의 차선정보의 잡음도 판별)

  • Yi, Un-Kun;Baek, Kwang-Ryul;Kwon, Seok-Geon;Lee, Joon-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.761-764
    • /
    • 2000
  • This paper presents a Fuzzy Neural Network (FNN) system to decide whether or not the right information of lanes can be extracted from gray-level images of road scene. The decision of noisy level of input images has been required because much noises usually deteriorates the performance of feature detection based on image processing and lead to erroneous results. As input parameters to FNN, eight noisiness indexes are constructed from a cumulative distribution function (CDF) and proved the indexes being classifiers of images as the good and the bad corrupted by sources of noise by correlation analysis between input images and the indexes. Considering real-time processing and discrimination efficiency, the proposed FNN is structured by eight input parameters, three fuzzy variables and single output. We conduct much experiments and show that our system has comparable performance in terms of false-positive rates.

  • PDF

Automatic Change Detection Based on Areal Feature Matching in Different Network Data-sets (이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지)

  • Kim, Jiyoung;Huh, Yong;Yu, Kiyun;Kim, Jung Ok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.483-491
    • /
    • 2013
  • By a development of car navigation systems and mobile or positioning technology, it increases interest in location based services, especially pedestrian navigation systems. Updating of digital maps is important because digital maps are mass data and required to short updating cycle. In this paper, we proposed change detection for different network data-sets based on areal feature matching. Prior to change detection, we defined type of updating between different network data-sets. Next, we transformed road lines into areal features(block) that are surrounded by them and calculated a shape similarity between blocks in different data-sets. Blocks that a shape similarity is more than 0.6 are selected candidate block pairs. Secondly, we detected changed-block pairs by bipartite graph clustering or properties of a concave polygon according to types of updating, and calculated Fr$\acute{e}$chet distance between segments within the block or forming it. At this time, road segments of KAIS map that Fr$\acute{e}$chet distance is more than 50 are extracted as updating road features. As a result of accuracy evaluation, a value of detection rate appears high at 0.965. We could thus identify that a proposed method is able to apply to change detection between different network data-sets.

Contrast HOG and Feature Spatial Relocation based Two Wheeler Detection Research using Adaboost

  • Lee, Yeunghak;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • This article suggests a new algorithm for detecting two-wheelers on the road that have various shapes according to viewpoints. Because of complicated shapes, it is more difficult than detecting a human. In general, the Histograms of Oriented Gradients(HOG) feature is well known as a useful method of detecting a standing human. We propose a method of detecting a human on a two-wheelers using the spatial relocation of HOG (Histogram of Oriented Gradients) features. And this paper adapted the contrast method which is generally using in the image process to improve the detection rate. Our experimental results show that a two-wheelers detection system based on proposed approach leads to higher detection accuracy, less computation, and similar detection time than traditional features.

A Vehicle Tracking Algorithm Focused on the Initialization of Vehicle Detection-and Distance Estimation (초기 차량 검출 및 거리 추정을 중심으로 한 차량 추적 알고리즘)

  • 이철헌;설성욱;김효성;남기곤;주재흠
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1496-1504
    • /
    • 2004
  • In this paper, we propose an algorithm for initializing a target vehicle detection, tracking the vehicle and estimating the distance from it on the stereo images acquired from a forward-looking stereo camera mounted on a road driving vehicle. The process of vehicle detection extracts road region using lane recognition and searches vehicle feature from road region. The distance of tracking vehicle is estimated by TSS correlogram matching from stereo Images. Through the simulation, this paper shows that the proposed method segments, matches and tracks vehicles robustly from image sequences obtained by moving stereo camera.

Robust Terrain Classification Against Environmental Variation for Autonomous Off-road Navigation (야지 자율주행을 위한 환경에 강인한 지형분류 기법)

  • Sung, Gi-Yeul;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.894-902
    • /
    • 2010
  • This paper presents a vision-based robust off-road terrain classification method against environmental variation. As a supervised classification algorithm, we applied a neural network classifier using wavelet features extracted from wavelet transform of an image. In order to get over an effect of overall image feature variation, we adopted environment sensors and gathered the training parameters database according to environmental conditions. The robust terrain classification algorithm against environmental variation was implemented by choosing an optimal parameter using environmental information. The proposed algorithm was embedded on a processor board under the VxWorks real-time operating system. The processor board is containing four 1GHz 7448 PowerPC CPUs. In order to implement an optimal software architecture on which a distributed parallel processing is possible, we measured and analyzed the data delivery time between the CPUs. And the performance of the present algorithm was verified, comparing classification results using the real off-road images acquired under various environmental conditions in conformity with applied classifiers and features. Experiments show the robustness of the classification results on any environmental condition.

DESIGN AND IMPLEMENTATION OF FEATURE-BASED 3D GEO-SPATIAL RENDERING SYSTEM USING OPENGL API

  • Kim Seung-Yeb;Lee Kiwon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.321-324
    • /
    • 2005
  • In these days, the management and visualization of 3D geo-spatial information is regarded as one of an important issue in GiS and remote sensing fields. 3D GIS is considered with the database issues such as handling and managing of 3D geometry/topology attributes, whereas 3D visualization is basically concerned with 3D computer graphics. This study focused on the design and implementation for the OpenGL API-based rendering system for the complex types of 3D geo-spatial features. In this approach 3D features can be separately processed with the functions of authoring and manipulation of terrain segments, building segments, road segments, and other geo-based things with texture mapping. Using this implementation, it is possible to the generation of an integrated scene with these complex types of 3D features. This integrated rendering system based on the feature-based 3D-GIS model can be extended and effectively applied to urban environment analysis, 3D virtual simulation and fly-by navigation in urban planning. Furthermore, we expect that 3D-GIS visualization application based on OpenGL API can be easily extended into a real-time mobile 3D-GIS system, soon after the release of OpenGLIES which stands for OpenGL for embedded system, though this topic is beyond the scope of this implementation.

  • PDF

Detection of Direction Indicators on Road Surfaces Using Inverse Perspective Mapping and NN (원근투영법과 신경망을 이용한 도로노면 방향지시기호 검출 연구)

  • Kim, Jong Bae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.4
    • /
    • pp.201-208
    • /
    • 2015
  • This paper proposes a method for detecting the direction indicator shown in the road surface efficiently from the black box system installed on the vehicle. In the proposed method, the direction indicators are detected by inverse perspective mapping(IPM) and bag of visual features(BOF)-based NN classifier. In order to apply the proposed method to real-time environments, the candidated regions of direction indicator in an image only performs IPM, and BOF-based NN is used for the classification of feature information from direction indicators. The results of applying the proposed method to the road surface direction indicators detection and recognition, the detection accuracy was presented at least about 89%, and the method presents a relatively high detection rate in the various road conditions. Thus it can be seen that the proposed method is applied to safe driving support systems available.