• Title/Summary/Keyword: river management flow

Search Result 421, Processing Time 0.023 seconds

Development of Distributed Rainfall-Runoff Model Using Multi-Directional Flow Allocation and Real-Time Updating Algorithm (II) - Application - (다방향 흐름 분배와 실시간 보정 알고리듬을 이용한 분포형 강우-유출 모형 개발(II) - 적용 -)

  • Kim, Keuk-Soo;Han, Kun-Yeun;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.259-270
    • /
    • 2009
  • The applicability of the developed distributed rainfall runoff model using a multi-directional flow allocation algorithm and a real-time updating algorithm was evaluated. The rainfall runoff processes were simulated for the events of the Andong dam basin and the Namgang dam basin using raingauge network data and weather radar rainfall data, respectively. Model parameters of the basins were estimated using previous storm event then those parameters were applied to a current storm event. The physical propriety of the multi-directional flow allocation algorithm for flow routing was validated by presenting the result of flow grouping for the Andong dam basin. Results demonstrated that the developed model has efficiency of simulation time with maintaining accuracy by applying the multi-directional flow allocation algorithm and it can obtain more accurate results by applying the real-time updating algorithm. In this study, we demonstrated the applicability of a distributed rainfall runoff model for the advanced basin-wide flood management.

Application of Water-Quality Management Model for Upstream Basin of Hoengsung Dam (횡성댐 상류유역에 대한 수질관리모형의 적용)

  • Kim, Sang Ho;Lee, Eul Rae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.239-246
    • /
    • 2008
  • In this study, an optimized deterministic water-quality model was constructed to estimate water quality of a river and lake in the upstream basin of a dam. A stochastic water-quality analysis using reliability analysis technique was applied to the model. The model was tested in the 13.9 km reach from Maeil stage station of Kyechun to Hoengsung Dam of Sum River. After finding hydraulic characteristics from nonuniform flow analysis, Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization technique for model calibration was applied to determine optimum reaction parameters, and model verification was performed based on these. The stochastic model, using Mean First­Order Second­-Moment (MFOSM) and Monte-Carlo methods, was applied to the same reach as the deterministic study. Variations of discharge and water quality in headwater were considered, as well as variations of hydraulic coefficients and reaction coefficients. The statistical results of output variables from MFOSM were similar to those from the Monte-Carlo method. Risk analysis using MFOSM and Monte-Carlo methods presented the probabilities of some locations in the Hoengsung Lake violating existing water-quality standards in terms of DO and BOD.

Sensitivity Analysis of the Groundwater Flow Model Parameters in a Small Rural Watershed (농촌 소유역에서 지하수 유동 모형의 매개변수 민감도 분석)

  • Park, Ki-Jung;Chung, Sang-Ok
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.687-693
    • /
    • 2004
  • The MODFLOW simulated results with varying input parameter values were compared and analyzed. To understand the relative importance of the input parameters, sensitivity analysis was carried out. The amount of sustainable yield was analyzed with respect to the hydraulic conductivity, specific yield, specific storage, aquifer thickness and the distance of the wells from the river. The results of sensitivity analysis showed that inflow from the river and the aquifer storage were sensitive to the specific yield and aquifer thickness. Sustainable yield was sensitive to the hydraulic conductivity and aquifer thickness. The results of this study can be used as a basic information for groundwater development and management plannings considering regional characteristics.

A Flood Routing for the Downstream of the Kum River Basin due to the Teachong Dam Discharge (대청댐 방류에 따른 금강 하류부의 홍수추적)

  • Park, Bong-Jin;Gang, Gwon-Su;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.131-141
    • /
    • 1997
  • In this study, the Storage Function Method and Loopnet Model (Unsteady flow analysis model) were used to construct the flood prediction system which can predict the effects of the water release in the downstream region of Teachong Dam. The regional frequency analysis (L-moment) was applied to compute frequency-based precipitation, and the flood prediction system was also used for flood routing of the down stream region of Teachong Dam in the Kum River Basin to calculate frequency based flood. The magnitude of flood, water level, discharge, and travel time to the major points of the downstream region of Teachong Dam, which can be used as an imdex of flood control management of Teachong Dam, were calculated.

  • PDF

A Study on Pollution Property of Urban River Inflow in Regulating Reservoir (조정지댐에 유입하는 도시하천 오염특성에 관한 연구)

  • Chang, In-Soo;Park, Ki-Bum;Lee, Won-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.935-943
    • /
    • 2006
  • This study focuses on analyzing the inflow characteristic of contaminants of city water that flows into a main water system like a reservoir, and intends to provide basic data which can be efficiently reflected on water quality management policy and decision making of a reservoir. The conclusion obtained from the analysis of the inflow of a main water system by analyzing the inflow property of city water contaminants is as follows. In the case of Chungju-cheon stream which is the city water, pollution load from the basic outflow is low when it rains, and with high load of basic outflow during the dry season, due to the discharge of pollutants from the city, the quality of water becomes worse. In the case of Chungju-cheon stream, average BOD is $4.53mg/{\ell}$ when it rains, and the contaminants increase and flow in about 7.8% compared to the average BOD during the average droughty season. The average SS concentration in water is $798.67mg/{\ell}$ and increased 97.2% compared to the average droughty season.

Runoff Characteristics of Refractory Organic Matters from Kyongan River Watershed during Rainfall Event and Dry Season (경안천 유역의 강우 시, 비 강우 시 난분해성 유기물질 유출 특성)

  • Kim, Taewon;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.397-404
    • /
    • 2011
  • This research investigates the runoff characteristics of refractory organic matters from Kyongan river watershed. Samples were taken 27 times during dry season, 4 times during rain events and analyzed into flow rate, Dissolved Organic Carbon (DOC), Particulate Organic Carbon (POC), Refractory Dissolved Organic Carbon (R-DOC), Refractory Particulate Organic Carbon (R-POC). R-DOC during dry season was the lowest in winter and showed a rising tendency in spring and R-POC changes less than R-DOC. The mass loading of Refractory Total Organic Carbon (R-TOC) in summer takes approximately 80% of 1 year mass loading. During rainy season, EMC of R-DOC was similar to R-DOC in dry season. But maximum EMC of R-POC was 12 times higher than that of R-POC in dry season. Results of the survey show that enhanced management of R-DOC in dry season and R-POC in rainy season is needed.

Flow Assessment and Prediction in the Asa River Watershed using different Artificial Intelligence Techniques on Small Dataset

  • Kareem Kola Yusuff;Adigun Adebayo Ismail;Park Kidoo;Jung Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.95-95
    • /
    • 2023
  • Common hydrological problems of developing countries include poor data management, insufficient measuring devices and ungauged watersheds, leading to small or unreliable data availability. This has greatly affected the adoption of artificial intelligence techniques for flood risk mitigation and damage control in several developing countries. While climate datasets have recorded resounding applications, but they exhibit more uncertainties than ground-based measurements. To encourage AI adoption in developing countries with small ground-based dataset, we propose data augmentation for regression tasks and compare performance evaluation of different AI models with and without data augmentation. More focus is placed on simple models that offer lesser computational cost and higher accuracy than deeper models that train longer and consume computer resources, which may be insufficient in developing countries. To implement this approach, we modelled and predicted streamflow data of the Asa River Watershed located in Ilorin, Kwara State Nigeria. Results revealed that adequate hyperparameter tuning and proper model selection improve streamflow prediction on small water dataset. This approach can be implemented in data-scarce regions to ensure timely flood intervention and early warning systems are adopted in developing countries.

  • PDF

Research on Environmentally-Sound Erosion Control Works(II) -The Management and Guidelines of Riparian Zone in Japan- (환경(環境)과 조화한 사방사업(砂防事業)(II) -일본(日本)에 있어서 수변지역(水邊地域)의 관리(管理)와 지침(指針)-)

  • Chun, Kun-Woo;Kim, Kyoung-Nam;Seomun, Won;Yeom, Kyu-Jin;Ezaki, Tsugio
    • Journal of Forest and Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.112-127
    • /
    • 1998
  • A meeting for Japan Society of Erosion Control Engineering took place, from May 20-21 in Sapporo, Japan, with the presentations of 21 special topics and 185 general papers. Special topics consists of 6 copies on volcanic disaster prevention, 6 copies on the activity report of Earthquake Erosion Control Engineering Society, 5 copies on the management and guidelines of riparian zone and 4 copies on debris disaster occurred in 1997. General papers consists of 10 copies on slope stability, 10 copies on slope failure, 9 copies on earthquake, 41 copies on environmental erosion control, 25 copies on debris flow, 11 copies on warning and refuge, 10 copies on erosion control plan, 11 copies on erosion control project, 10 copies on erosion control facility, 12 copies on volcanic erosion control, 4 copies on revegetation technology, 4 copies on forest hydrology, 4 copies on avalanche, 4 copies on landslide, 18 copies on debris flow and 2 other copies presented by international student. Among the special topics, 5 papers with the titles of the function and structure of riparian zone, the interactive relation of flood and riparian zone, the management method of channel and river forest for controlling debris flow, the forest restoration efforts by native population, the law and social issue for building river riparian zone were presented in the subsection of "The Management and Guidelines of Riparian Zone". Thus, this article summarize and introduce the presented contents which are very important and can be referred to keep environmentally sound-river in the erosion control field.

  • PDF

Analysis of Groundwater Use in Kap-cheon Basin (갑천 유역의 지하수 이용 특성 분석)

  • Hong, Sung-Hun;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.463-471
    • /
    • 2008
  • The purpose of this study is to analyze the features of groundwater use to utilize as basic information for water-cycle analysis system development and effective groundwater management in the Kap-cheon basin. The cumulative relationship between groundwater use and the number of wells was analyzed to estimate the representative total groundwater use and the number of wells for the Kap-cheon basin. Then, the spatial distribution of groundwater use in the basin were figured out using the detailed information on groundwater use in each well. Finally, the reasonability of groundwater resources management in Kap-cheon basin was evaluated by comparing groundwater recharge and groundwater use in sub-basins and major stream basins. The results of the analysis showed about 25% of the total wells could represent 90% of groundwater use ($37,923,516\;m^3$/year) in the Kap-cheon basin. A detailed analysis on the groundwater uses in the vicinity of down-town areas of Daejeon metropolitan city showed high groundwater uses ($1.4{\sim}11.1$ times) compared to the groundwater recharge previously estimated using the rainfall-runoff model. The ratio of groundwater use and groundwater recharge for the major river basins in Kap-cheon basin ranged from 1.9 to 2.3 indicating that more sustainable groundwater management should be exercised. The results of this study can be used as basic information in evaluating the change of groundwater flow, stream flow and water-cycle for various groundwater uses in the Kap-cheon basin.

The Trend and Assessment of Water Pollution from Midstream to Downstream of the Kum River (금강 중 ${\cdot}$ 하류의 오염 양상과 수질평가)

  • Rim, Chang-Soo;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.51-60
    • /
    • 2000
  • In order to understand the trend and assessment of water pollution, seasonal water quality was determined in the main river and the tributaries from midstream to downstream of the Kum River from March 1998 to June 1999. Among environmental factors, the variation of nitrogen, phosphorus and chlorophyll-a was distinctive on an aspect of increase and decrease relatively to others, and particularly the impact of inorganic N ${\cdot}$ P inflowing into the main river was observed to be more significant at the Kapchon, Mihochon and Soksongchon among the tributaries. Water quality was highly related to hydrologic factor, and it was more deteriorated when water discharge maintains for a long time below normal flow or relatively at low condition of minimum and drought flow. These phenomena were remarkablee from December to March of the next year. $NH_4$ and SRP were decreased dramatically flowing toward the lower part of the river and chl-a was increased exponentially. While, the variations of $NO_3$ and $BOD_5$ were regular from midstream to downstream and there was no significant difference between the stations. Limiting nutrient for Phytoplankton growth seemed to be P than N because the ratio of TN/TP or DIN/SRP was relatively high as 42 or 544 in the main river, respectively. The main river and tributaries were ranked to be third grade, based on the assessment of BOD as an indirect indicator of organics, but particularly Kapchon was ranked to be over fifth grade. In addition, the inflow of high N ${\cdot}$ P nutrients from tributaries including Kapchon and Mihochon seemed to be major factor of the development of water pollution of the Kum River. On the other hand, persistent bloom of phytoplankton in lower part of the river was observed. As a conclusion, management of water quality for main source of pollution is urgent.

  • PDF