• Title/Summary/Keyword: river junction

Search Result 53, Processing Time 0.042 seconds

A Study on the Hydraulic Characteristics of River Junctions Using FLDWAV Model (FLDWAV 모형을 이용한 하천합류부에서의 수리학적 특성 연구)

  • Cho, Hyeon-Kyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.275-283
    • /
    • 2007
  • This study aims at the calculation of a variation of flow characteristics of main channel for tributary inflow in river junction. So this study was analyzed the variation of flow depth and velocity in main channel for a change of inflow degree. For this purpose, FLDWAV model are carried out for variations of $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$ tributary inflow at junction. Results show that velocity ratio(V1/V3) increases and flow depth ratio(H1/H3) decreases for discharge ratio(Q1/Q3) of upstream and downstream when degree increases in junction. And FLDWAV model was applied at a real river junctions. Selected area is a junction of Gumho river and Sin stream. Results show that pattern is similar to a virtual channel.

  • PDF

Numerical analysis of flow and bed change at a confluence of the Namhan River and the Seom River using a two-dimensional model (2차원 수치모형을 이용한 남한강과 섬강 합류부 구간의 흐름 및 하상변동 해석)

  • Park, Moonhyung;Kim, Hyung Suk;Baek, Chang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1273-1284
    • /
    • 2018
  • The flow and bed change were analyzed using the CCHE2D model, which is a two-dimensional numerical model, at a confluence of the Namhan River and Seom River where deposition occurs predominantly after the "Four Major Rivers Restoration Project." The characteristic of the junction is that the tributary of Seom River joined into the curved channel of the main reach of the Namhan River. The CCHE2D model analyzes the non-equilibrium sediment transport, and the adaptation lengths for the bed load and suspended load are important variables in the model. At the target area, the adaptation length for the bed load showed the greatest influence on the river bed change. Numerical simulation results demonstrated that the discharge ratio ($Q_r$) change affected the flow and bed change in the Namhan River and Seom river junction. When $Q_r{\leq}2.5$, the flow velocity of the main reach increased before confluence, thereby reducing the flow separation zone and decreasing the deposition inside the junction. When $Q_r$>2.5, there was a high possibility that deposition would be increased, thereby forming sand bar. Numerical simulation showed that a fixed sand bar has been formed at the junction due to the change of discharge ratio, which occurred in 2013.

Patterns and Trends of Water Level and Water Quality at the Namgang Junction in the Nakdong River Based on Hourly Measurement Time Series Data (낙동강 남강 합류부 수위와 수질 패턴 및 추세)

  • Yang, Deuk Seok;Im, Teo Hyo;Lee, In Jung;Jung, Kang Young;Kim, Gyeong Hoon;Kwon, Heon Gak;Yoo, Je-Chul;Ahn, Jung Min
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.63-74
    • /
    • 2018
  • As part of the Four Major Rivers Restoration Project, multifunctional weirs have been constructed in the rivers and operated for river-level management. As the weirs play a role in draining water from tributaries, the aim of this study was to determine the influence of the weirs on the water level of the Nam River, which is one of the Nakdong River's tributaries. Self-organizing maps (SOMs) and a locally weighted scatterplot smoothing (LOWESS) technique were applied to analyze the patterns and trends of water level and quality of the Nakdong River, considering the operation of the Changnyeong-Haman weir, which is located where the Nam River flows into the Nakdong River. The software program HEC-RAS was used to find the boundary points where the water is well drained. Per the study results at the monitoring points ranging between the junction of the two rivers and 17.5 km upstream toward the Nam River, the multifunctional weir influenced the water level at the Geoyrong and Daesan observation stations on the Nam River and the water quality based on automatic monitoring at the Chilseo station on the Nakdong River was affected strongly by the Nakdong River and partly by the Nam River.

Investigation on Water Quality Variation Characteristics during Dry Season in Namhan River Drainage Basin (남한강수계 저수기 수질변동 특성에 관한 연구)

  • Lee, H.J.;Kong, D.S.;Kim, S.H.;Shin, K.S.;Park, J.H.;Kim, B.I.;Kim, S.M.;Jang, S.H.;Cheon, S.U.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.889-896
    • /
    • 2007
  • From the direct outflow of Chungju Dam to the junction of water body and watershed in Paldang lake is the scope of this research. This study performed to investigate the main cause of water quality deterioration and the influenced region in the middle field range of the Namhan river Basin with the onsite measurement of water quality and flow rate simultaneously during spring dry season. The purpose of this study is to find out the time-spatial variation characteristics of water quality and flow rate. Following the flow direction $BOD_5$ and $COD_{Mn}$ concentration increased to the highest value of 3.7 mg/L, 5.9 mg/L at Wolgesa respectively. Chl.a concentration increased to $50mg/m^3$ or so at Kangsang, after that it decreased to $37mg/m^3$ at the junction of Paldang lake. Organic matter concentration variation trend showed similar than that of Chl.a. Also $BOD_5$ concentration tendency was similar to Chl.a in every measuring sites except Paldang lake mixing zone. The major factors of water quality deterioration in Namhan river and Paldang lake during dry season were algal bloom and followed internal production. High phosphorus load from Dalcheon and Seom river caused dry season algal bloom and internal production in transitional zone which was stagnant area in downstream of Namhan river.

An Evaluation of River Discharge Estimates in a Junction with Backwater effect using Interpolated Hydraulic Performance Graph (HPG로 산정한 합류부 배수영향 구간의 유량 평가)

  • Kim, Ji-Sung;Kim, Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.831-838
    • /
    • 2018
  • This paper presents a method to estimate the flow discharge in a backwater affected river junction. First, unsteady HEC-RAS model was simulated and calibrated using 2 recent real flood and then HPG (Hydraulic Performance Graph) was created by plotting the relationship between upstream and downstream stages and discharge in the reach and performing kriging interpolation. During a flood, the discharge through the reach can be estimated based on the stages at its ends and the developed HPG. These discharge data were in good agreement with the automatic discharge measurements such as ADVM. This study could provide an economical and practical method for estimating discharge in a junction with a high hysteresis of stage-discharge relationships.

Verification of Water Environment Network Representative at the Baekcheon Junction of the Nakdong River (낙동강 백천 합류부 지점의 물환경측정망 대표성 검증)

  • Ahn, Jung Min;Im, Teo Hyo;Kim, Sung Min;Kim, Shin;Kim, Gyeong Hoon;Kwon, Heon Gak;Shin, Dongseok;Yang, Deuk Seok
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.371-381
    • /
    • 2018
  • Multifunctional weirs constructed through the Four Major Rivers Restoration Project are operated as management water levels. The purpose of this study was to evaluate the effect of water level in the main stem on the tributary water level according to multifunctional weir operation, because the operation of multifunctional weirs for water level management influences the drainage of tributaries. In this study, water level pressure gauges were installed and spatial and temporal water quality was observed. The LOcally Weighted Scatterplot Smoothing (LOWESS) technique was applied to the Nakdong River and the Baekcheon Junction, both upstream of the Gangjeong-Goryeong weir, in order to analyze water quality trends. When considering the overall analysis and observations, it was found that the water quality forecasting point located at the Baekcheon estuary point should be transferred to the Dosung Bridge, which is located upstream of the Sunwon Bridge.

The 2D Finite Element Analysis in Nakdong-Kumho River Junction using GIS (GIS를 이용한 낙동강-금호강 합류부의 2차원 유한요소해석)

  • Hwang, Jae-Hong;Han, Kun-Yeun;Nam, Ki-Young;Choi, Seung-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.21-34
    • /
    • 2009
  • Usually in flood flow problems, one-dimensional approach does not provide the required details of complex flow phenomena such as the flow in braided rivers and river junction. In this study, two-dimensional finite element mesh is constructed using DEM and GIS tool, and applied to RMA-2model. The purpose of this study is to investigate the applicability of the two dimensional model in natural rivers and to analyze characteristics of river flow due to the change of cross section. For model calibration, the result of unsteady flow analysis was compared with the observed data. Accordingly, the SMS model in this study prove to be very effective and reliable tool for the simulation of hydrodynamic characteristics under the various flow conditions.

  • PDF

Study on Hydraulic Effect from Removal of Sandbar in River (하천 사주의 제거로 인한 수리적 영향에 관한 연구)

  • 천만복
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.48-53
    • /
    • 1997
  • The sand bar has developed at the junction of the Kum-ho River and Shin-ryoung River. The sediment transported from the Kumho River basin has decreased since the Youngchon Dam has been functioning. Sand bar and the vicinity of the bottleneck at the upstrem of Kumho River and Osu Island which is consisted of sand bar have inundated frequently. This study was carried out through the hydraulic model test to calibrate the hydraulic effect from removal of sand bar in the river and straightening the river course by land reclamation. The water level of river at the vicinity of bottleneck can be lowered as much as 0.40~0.7m when the sand bar is removed. When river is straightened the river course by land reclamation the water level can be lowered as half of removal of sand bar.

  • PDF

Application of Surface Runoff-River flow Model to Small- and Large-Size Catchment Areas (소유역 및 대유역 홍수유출모형의 적용)

  • Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.87-104
    • /
    • 2003
  • A numerical model of surface runoff and river flow has been applied to small- and large-size catchment areas in order to investigate the physical characteristics of river flow during flood period. Several refinements are made on the existing model SIRG-RS for the ways of rainfall input through surface runoff, river junction treatment and the computation of river flow on steep slope. For the computation of frictional forces, employed is the power law of friction factor which is a function of Reynolds number and relative roughness height. The empirical equation of friction factor is developed using recent field data as well as laboratory data. The refined model has been applied to small-size catchment area as well as large-size catchment area, and the computation results are found in good agreement with the observations in both cases.