• Title/Summary/Keyword: river flow

Search Result 2,055, Processing Time 0.036 seconds

Analysis of Hydraulic Characteristics in the Middle Reaches of Nak-Dong River using 2-Dimensional Numerical Analyis Model (2차원 수치해석모형을 이용한 낙동강 중류구간의 하천흐름 해석)

  • Han, Sung-Dea;Choi, Hyun;Ahn, Chang-Hwan;Lee, Je-Yun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1732-1736
    • /
    • 2008
  • The characteristics of a river flow analysis are significant for river maintenance plan. At the present time, HEC-RAS, 1-Dimensional Numerical Analysis Model, is mainly applied to analyze the character of a river flow. The shape of a river is somewhat in longitudinal linear form. It was suspected that the usage of 1-dimensional numerical analysis model is more economical. Development of numerical analysis models and computers are possible to calculate large volume. Hence, it is possible to adapt the analysis of the key stations by 2-dimensional numerical analysis model. The limitation of 1-Dimensional Numerical Analysis Model is that it is hard to evaluate structure affection of numerical simulation by energy loss coefficient at river structure analyzing. When adaptation of the 2-dimensional numerical analysis model in river structure ensues, it takes more objective analyzing than 1-dimensional numerical analysis model for flow affection by river structure. 2-dimensional numerical analysis model consults with the different structure position of hydraulic characteristics and different water depth of shape and scope in vertical flow. 1-dimensional numerical analysis model is possible to simulate with only energy loss coefficient for sudden river section changing, sudden waterway changing by curved. 2-dimensional numerical analysis model use original geographical features. So the model removes technical subjectivity of faulty judgment. It is an objective analysis.

  • PDF

Evaluation of the Possibility of Daily Flow Data Generation from 8-Day Interval Measured Flow Data using SWAT-CUP (SWAT-CUP을 이용한 8일간격 유량측정자료의 일유량 확장 가능성 평가)

  • Jung, Jaewoon;Cho, Sohyun;Lim, Byungjin;Oh, Taeyoun;Ham, Sangin;Kim, Kapsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.595-600
    • /
    • 2012
  • This study is to assess the application of SWAT-CUP(Soil and Water Assessment Tool-Calibration Uncertainty Programs) and to extend daily flow data from 8-day interval flow data which has been measured by Korean Ministry of Environment(MOE). Model sensitivity analysis and calibration were performed with sequential uncertainty fitting(SUIF-2), which is one of the programs interfaced with SWAT, in the package SWAT-CUP. The most sensitive parameters were SOL_K.sol, CH_N2.rte, CN2.mgt, SOL_BD.sol, ALPHA_BF.gw, ALPHA_BNK.rte, SOL_AWC.sol, CH_K2.rte, SFTMP.bsn, GW_DELAY.gw. Following the sensitivity analysis, SWAT-CUP calibration was carried out using 8-day interval flow data from January 2008 to December 2010. The results were then assessed based on the visual agreement and simulated flow plots and the performance statistics generated $R^2$ and NSE which are 0.71 and 0.61 respectively. Results of these statistics indicated that there was a good agreement between the observed and simulated flow. To extend daily flow data from 8-day interval flow data, parameters, which were estimated by SWAT-CUP, re-entered for SWAT model. As a result, the observed flow data were found to reflect the trend of simulated flow data. From these results, it is thought that this method could be used to provide daily flow data using 8-day interval flow data.

Estimation of Optimum Flow for Fish Habitat for Major Tributaries in Gurm River Basin Using Two Dimensional Physical Habitat Simulation (2차원 물리서식처 모의를 이용한 금강수계 주요 지류에서의 어류서식처 최적유량 산정)

  • Oh, Kuk-Ryul;Jeong, Sang-Man;Lee, Joo-Heon;Seo, Hyung-Deok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.691-694
    • /
    • 2008
  • The results of research, which proposes the optimum flow considering the habitation environment of fishes in determining the instream flow, have been drawn by many researchers in Korea. In this study, the relations of weighted usable area to discharge are researched. In addition, River2D, which is the simulation model of 2D physical habitats, is applied to the main tributaries of the Geum River basin on the instream flow incremental methodology proposed in the U.S. in order to calculate optimum flow in each growth step of fish, which are the dominant species living in the river, considering the habitat of fishes in streams.

  • PDF

A Nonparametric Long-Term Trend Analysis Using Water Quality Monitoring Data in Nam-River (남강 수질측정망 자료를 이용한 비모수적 장기 수질 추세 분석)

  • Jung, Kang-Young;Kim, Myojeong;Song, Kwang Duck;Seo, Kwon Ok;Hong, Seong Jo;Cho, Sohyun;Lee, Yeong Jae;Kim, Kyunghyun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1029-1048
    • /
    • 2018
  • In this study, seasonal Mann - Kendall test method was applied to 12 stations of the water quality measurement network of Nam-River based on data of BOD, COD, TN and TP for 11 years from January 2005 to December 2015 The changes of water quality at each station were examined through linear trends and the tendency of water quality change during the study period was analyzed by applying the locally weighted scatter plot smoother (LOWESS) method. In addition, spatial trends of the whole Nam-River were examined by items. The flow-adjusted seasonal Kendall test was performed to remove the flow at the water quality measurement station. As a result, BOD, COD concentration showed "no trand" and TN and TP concentration showed "down trand" in regional Kendall test throughout the study period. BOD and TP concentration in "no trand", COD, and TN concentration showed an "up trand" tendency in Nam-River dam. LOWESS analysis showed no significant water quality change in most of the analysis items and stations, but water quality fluctuation characteristics were shown at some stations such as NR1 (Kyungho-River 1), NR2 (Kyungho-River 2), NR3 (Nam-River), NR6 (Nam-River 2A). In addition, the flow-adjusted seasonal Kendall results showed that the BOD concentration was "up trand" due to the flow at the NR3 (Nam-River) station. The COD concentration was "up trand" due to the flow at NR1 (Kyungho-River 1) and NR2 (Kyungho-River 2) located upstream of the Nam-River. The effect of influent flow on water quality varies according to each site and analysis item. Therefore, for the effective water quality management in the Nam-River, it is necessary to take measures to improve the water quality at the point where the water quality is continuously "up trand" during the study period.

Development of 1D finite volume model for discontinues flow simulation (K-River) (불연속 흐름 모의를 위한 1차원 유한체적 모형 K-River의 개발)

  • Jeong, Anchul;An, Hyunuk;Kim, Yeonsu;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.895-903
    • /
    • 2018
  • There are a large number of weirs installed in rivers of Korea, and these characteristics are not common in other countries. When the flow passes through a structure such as a weir, discontinuous flow occurs. In terms of numerical simulation, it affects the numerical instability due to the balance between the flow term and the source term. In order to solve these problems, many researchers used empirical formulas or numerical scheme simplification. Recently, researches have been conducted to use more accurate numerical scheme. K-River was developed to reflect the characteristics of domestic rivers and calculate the discontinuous flow more accurately. For the verification of K-River, 1) numerical experiment simulations with a bump in the bed, 2) laboratory experiment of hydraulic jump simulation, 3) real river were performed. K-River verified its applicability by simulating results similar to the exact solution and observed value in all simulations.

A Study for the Calculation of Instream Flow in the Rehabilitation of Urban stream (도심하천 복원에 따른 하천유지유량 산정 연구)

  • Choi, Gye Woon;Chang, Yun Gyu;Han, Man Sin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.448-452
    • /
    • 2004
  • Instream flow is necessary to manage the basic function of the rivers. The evaluation method of instream flow in a big river has been studied widely. However, the study in a urban hasn't researched. In theses days the environmental function of a river becomes very important. The evaluation method and secure of instream flow are basic conditions to perform it. Especially view of stream, recreation, protection of ecology are highly demanded In a urban according to the multipurpose of river spaces. In this paper the evaluation methods of instream flow were compared and investigated with many papers. This paper presents a proper evaluation procedure of instream flow in a urban stream through comparison and examination. According to the demanded hydraulic conditions the method can be considered the environmental function depend on the purpose of river restoration. The relationship of the coefficient of roughness and the slope of the river bed were examinated in order to estimate the minimum instream flow corresponding to proper Hydraulic conditions. Also calculate the instream flow of Sueng-gi stream in In-cheon.

  • PDF

Diffusive Estimation of the Conservative Contaminant in River Estuary (하구의 보존성 오염물질 확산 예측)

  • Yoon, Jong-Su;Shin, Chan-Ki;Hwang, Dong-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.3
    • /
    • pp.47-57
    • /
    • 2008
  • This study was predicted the diffusion of the conservative contaminant using a two-dimensional hydraulic model. The research area is upper basin of Jakwang river where the possibility where the pollutant of vast quantity will flow is high. Using SMS model, we calculated two-dimensional stream flow. And using this result, predicted the conduct of the conservative contaminant by pollutant transfer diffusion calculation. And also we predicted flow and contaminant diffusion in the near estuary by constructed guide bank. As a result of study, pollutant effect scope of the conservative contaminant was predicted with the fact that will broaden because of interception by guide bank. As discharge was increased from the Jakwang river, The diffusion of the pollutant is accelerated, also the effect scope increases.

Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin (낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.202-209
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of a sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. Flow and water quality data, such as BOD, COD, SS, T-N, and T-P data, for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS, and T-P were correlated positively with the river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluents and downstream streams, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between the river flow rate and the water quality factors (COD, SS, TP) was high at river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin (낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.493-493
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of the sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. The flow and water quality such as BOD, COD, SS, T-N, and T-P data for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS and T-P were correlated positively with river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluent and downstream stream, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between river flow rate and water quality factors (COD, SS, TP) was high for river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

  • PDF

Transport and Loadings of Nutrients and Dissolved Major and Trace Elements in the Yeongsan River, Korea

  • Cha Hyun-Ju;Cho, Yeong-Gil
    • Journal of the korean society of oceanography
    • /
    • v.37 no.2
    • /
    • pp.66-75
    • /
    • 2002
  • Temporal variation of nutrients and dissolved major and trace elements have been studied in the Yeongsan River, Korea. There were significant temporal fluctuations in the concentrations of these elements depending upon the flow condition. $NH_4$, $PO_4$, Na, Mg, Ca, K, Mn, Cu, Ni, Zn, Co, As and U concentrations were inversely related to the flow; that is, they are the highest at low flow and the lowest at high flow. It indicates that these elements are derived from point sources such as rock weathering and/or human activities and then diluted by increasing flow. Meanwhile, Fe and Si concentrations varied proportionally to the flow indicating that they are derived from diffuse sources including reactions within soil. The concentration-flow relationships showed that hydrology of the river is the most important factor controlling the chemical composition of the Yeongsan riverwater, which was compatible of the results of R-mode factor analysis.