• Title/Summary/Keyword: river environment

Search Result 3,056, Processing Time 0.034 seconds

A Nonparametric Long-Term Trend Analysis Using Water Quality Monitoring Data in Nam-River (남강 수질측정망 자료를 이용한 비모수적 장기 수질 추세 분석)

  • Jung, Kang-Young;Kim, Myojeong;Song, Kwang Duck;Seo, Kwon Ok;Hong, Seong Jo;Cho, Sohyun;Lee, Yeong Jae;Kim, Kyunghyun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1029-1048
    • /
    • 2018
  • In this study, seasonal Mann - Kendall test method was applied to 12 stations of the water quality measurement network of Nam-River based on data of BOD, COD, TN and TP for 11 years from January 2005 to December 2015 The changes of water quality at each station were examined through linear trends and the tendency of water quality change during the study period was analyzed by applying the locally weighted scatter plot smoother (LOWESS) method. In addition, spatial trends of the whole Nam-River were examined by items. The flow-adjusted seasonal Kendall test was performed to remove the flow at the water quality measurement station. As a result, BOD, COD concentration showed "no trand" and TN and TP concentration showed "down trand" in regional Kendall test throughout the study period. BOD and TP concentration in "no trand", COD, and TN concentration showed an "up trand" tendency in Nam-River dam. LOWESS analysis showed no significant water quality change in most of the analysis items and stations, but water quality fluctuation characteristics were shown at some stations such as NR1 (Kyungho-River 1), NR2 (Kyungho-River 2), NR3 (Nam-River), NR6 (Nam-River 2A). In addition, the flow-adjusted seasonal Kendall results showed that the BOD concentration was "up trand" due to the flow at the NR3 (Nam-River) station. The COD concentration was "up trand" due to the flow at NR1 (Kyungho-River 1) and NR2 (Kyungho-River 2) located upstream of the Nam-River. The effect of influent flow on water quality varies according to each site and analysis item. Therefore, for the effective water quality management in the Nam-River, it is necessary to take measures to improve the water quality at the point where the water quality is continuously "up trand" during the study period.

Flow Duration Curve Analysis for Nakdong River Basin using TMDL Flow Data (오염총량관리 유량측정자료를 이용한 낙동강 유역 유황분석)

  • Kim, Jae Chul;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.332-338
    • /
    • 2007
  • In this study the flow duration curves for Nakdong river basin are analyzed. The TANK model is used as a hydrologic simulation model whose parameters are estimated from 8-day intervals flow data measured by NIER Nakdong River Water Environment Laboratory. As a comparison result between generated natural and present river flow, the present river flow is higher than the natural river flow in the up- and mid-stream of Nakdong river, while the present river flow is lower than the natural river flow in the down stream of Nakdong river.

Spatial Distribution of Heavy Metals in Geum River after Weirs Construction (금강에서 보 설치 후 퇴적물 중금속 분포)

  • Yang, Yun Mo;Shim, Moo Joon;Oh, Da Yeon;Khan, Jong Beom;Lee, Jun Bae;Hong, Seoun Hwa;Lee, Soo Hyung;Park, Sang Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.64-68
    • /
    • 2015
  • BACKGROUND: Heavy metals (Al, As, Cd, Cr, Cu, Li, Hg, Ni, Pb, and Zn) were analyzed to elucidate the impact of weir construction on their concentrations in sediments of Geum River, Korea. We also attempted to investigate the source of the heavy metals in sediments. METHODS AND RESULTS: For this study, sediments were collected from May through June in 2012. The concentrations of heavy metals except Hg were determined by inductively coupled plasma mass spectrometer, and Hg was measured by automatic mercury analyzer. More clay were accumulated in the furthest stations in the upstream direction starting from the weirs. Most of the heavy metals showed higher concentrations in the most upstream located station of Geumnam Weir. However, high concentrations were not observed in the most upstream stations of the other weirs. The concentrations of Hg and As were much higher in sediments of Gap Stream. CONCLUSION: Gap Stream may be a potential source for high deposits of As and Hg. Presence of the dams may not play an important role in controlling heavy metal concentrations in sediments. It is necessary to monitor heavy metal concentrations for a longer time period to study the effect of environmental changes on heavy metal distribution in Geum River.

Development of Long Term Flow Duration Curves for the Management of Total Maximum Daily Loads - in the Nakdong River Basin - (수질오염총량관리 단위유역 장기유황곡선 구축 -낙동강수계를 대상으로-)

  • Kim, Gyeong hoon;Kwon, Heon gak;Ahn, Jung min;Kim, Sanghun;Im, Tae hyo;Shin, Dong seok;Jung, Kang-Young
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.939-953
    • /
    • 2017
  • For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.

Freshwater Habitats of Pectinatella magnifica (Leidy 1851) Living in South Korea (낙동강 본류에 출현하는 담수 태형동물 Pectinatella magnifica (Leidy 1851)의 서식환경 연구)

  • Jeong, Hyungi;Lee, Kyung-Lak;Choi, Byoung-ki;Kwon, Heongak;Park, Hae-Kyung;Jeong, Gang-yong;Yu, Jae Jeong
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.3
    • /
    • pp.352-359
    • /
    • 2015
  • In order to investigate the occurrence of Pectinatella magnifica in Nakdong River, extensive series of sampling was conducted through July to November of 2014. Results revealed that these species show preference to attach themselves on natural substrates over artificial substrates. P. magnifica does not show preference for specified substrates, but itappearthat availability of substrates determines their specific distribution. Considering that most commonly found substrates in Nakdong River were natural substrates such as dead twig, woody plants or aquatic plants, it is possible that high availability of substrates is one of the principal factors which increase the rates of growth and distribution of P. magnifica.

Evaluation on Actual Discharge Data for TMDL in Nakdong River Basin (낙동강수계 수질오염총량관리를 위한 유량조사 평가)

  • Kim, Gyeong-Hoon;Kim, Yong-Seok;Park, Bae-Kyung;Yoon, Jong-Su;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • To drive efficiently total water pollution load management, needs to calculate the exact load emissions, pollution load allocation and implementation evaluation in each unit area of watershed and accurate and regular flow of data. For these reasons, the Nakdong River TMDL Research Center has produced directly or indirectly in the average interval of eight days (30 times or more / year) 41 points for unit area of the total water pollution load management and 8-point of municipal requirement for a total of 49 branches as a flow data in 2004 from August. This acquired the survey flow is evidence of trends and changes each point in the Nakdong River based on time, such as 10 years based on average design flow available to the foundation of the summit as the major water policy is to be utilized. This study was performed on actual discharge measuring data and introduced performance results each drainage basin of Nakdong River from 2004 to 2008 over the total of past five years.

A study on the management and improvement of alert system according to algal bloom in the Daecheong Reservoir (대청호 조류발생에 따른 경보제 운영 및 개선 방안 고찰)

  • Jeong, Dong-Hwan;Lee, Jaejeong;Kim, Kyoyoung;Lee, Daehee;Hong, Sunhwa;Yoon, Johee;Hong, Sukyoung;Kim, Taeseung
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.915-925
    • /
    • 2011
  • Following the industrialization and urbanization in Korea, algal bloom causes aesthetic displeasure and many other problems such as taste and odor, coloration, scum, increase in pH, filter-bed blockage. There were some cases involving human death by microcystins during summertime in foreign countries. In Korea, Harmful cyanobacteria such as Microcystis and Anabaena develop in summer in the Daecheong reservoir, one of the main water resources, with the retention time of above 200 days. To better control algal bloom, the Ministry of Environment has been running algal bloom alert system from 1998 for the Daecheong reservoir, which needs to be improved to reflect the characteristics of river-type lakes. For this reason, we try to find new measures to improve an algal bloom alert system for each water zone considering the characteristics of harmful cyanobacteria in this study.

Formation of Phytoplankton Community and Occurrences of Odorous Compounds for Sediment Incubation by Water Temperature (퇴적층의 온도별 배양에 따른 조류군집 형성과 이취미물질 발생 특성)

  • Kim, Yong-Jin;Youn, Seok-Jea;Kim, Hun-Nyun;Hwang, Moon-young;Park, Jin-rak;Lee, Byoung-cheun;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.460-467
    • /
    • 2015
  • We analyzed the formation of phytoplankton community and the occurences of odorus compound from benthic cyanobacteria in North, South Han-River, Paldang-Lake and Kyeongan-Stream sediments. Sediments were incubated in different water temperature. Akinetes were found (0~500 cells/g) with the highest number on sediment in Yangsoo railroad bridge (YC). The result showed that Anabaena ranged between $0.02{\sim}0.53{\times}10^3cells/mL$ in Sambong (SB), YC, Mukhyen-Stream (MS), Paldang-Lake (P2) and Kyeongan-Stream (KK). The total 68 taxa of phytoplankton were observed during the incubation period. A standing crop of phytoplankton was in the range of $0.13{\sim}8.97{\times}10^3cells/mL$ and Microcystis appeared in SB, YC, P2 and KK sites with $20{\sim}25^{\circ}C$ temperature. In South Han-River (P3), Oscillatoria tenuis was dominant at $25^{\circ}C$ temperature. The concentration of geosmin was the highest in SB-$15^{\circ}C$ (25.5 ng/L), and the concentration of 2-MIB was the highest in P3-$25^{\circ}C$ (286.8 ng/L). Odorous compounds were detected in all the temperature conditions from each site. Our results indicate that the dominant benthic cyanobacteria (O. tenuis, O. limosa, Phormidium tenue and Pseudanabaena limnetica) have high correlation with the occurrence odorous compounds and 2-MIB.

Influence of River Discharge Fluctuation and Tributary Mixing on Water Quality of Geum River, Korea (유량변화와 지류유입에 따른 금강의 수질 변화)

  • Shim, Moo Joon;Lee, Soo Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.313-318
    • /
    • 2015
  • To study the influence of changes in river discharge on water quality of the main stem of the Geum River, we investigated variation of inflow load from tributaries with river discharge. We also studied the mixing behavior of pollutants during mixing of waters of the main stem and Gap Stream. For this study, we collected water quality data such as suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) representing pre-monsoon, monsoon, and post-monsoon events of 2013 from a website of Water Information System. Based on inflow load, the Gap and Miho streams may be ones of tributaries which may largely influence water quality of main stem in upper river region. The Suksung and Nonsan Streams seemed to further affect water quality downstream. Results of modified EMMA indicated SS and TP may have another source(besides Gap Stream) at pre-monsoon, monsoon, and post-monsoon period. In contrast, TN and organic matter (BOD, COD, TOC) were conservative at pre-monsoon and post-monsoon. However, when river discharge increased, these pollutants may also came from unspecified non-point sources. Therefore, we need to attempt to find non-point sources for the pollutants in the main channel of upper Geum River region.

An Analysis of Long-term Changes in Water Quality of Geumho River using Statistical Techniques

  • Jung, Kang-Young;Cho, Sohyun;Ha, Don-woo;Kang, Tae-woo;Lee, Yeong Jae;Han, Kun-Yeun;Kim, Kyunghyun
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.883-899
    • /
    • 2018
  • In this study, water quality data of eight main sites in the Geumho River watershed were collected and analyzed for long-term changes in water quality over the period from 2005 to 2015. The results showed that BOD concentration was gradually improved by the Total Maximum Daily Load (TMDL), stages 1 and 2. Recently, a tendency of increasing BOD concentration was observed in the downstream section of the river. The concentration of COD was analyzed to be contaminated throughout the water system regardless of the water quality improvement project, and the TN concentration tended to increase in the midstream of the river from 2013. The TP concentration has clearly decreased from 2012 after the second stage of TMDL. For the statistical analysis of PCA ordination, monthly water qualities (pH, DO, Electrical Conductivity (EC), Water Temperature (WT), BOD, COD, TN, TP, TOC, and SS) and flow rate data for 5 years from 2012 to 2016 were used. Seasonally the Geumho River showed an increase in the TN concentration at point sources during the dry season (December to February). TP showed the effect of non-point sources in the summer, because rainfall has caused a rise in flow rate in the upstream. Besides, the origin of pollution source was changed from non-point sources with BOD, COD, and TOC.