• Title/Summary/Keyword: river bend

Search Result 44, Processing Time 0.029 seconds

Study of Superelevation of Ichon-Banpo Bend Flow in the Han River (한강 이촌-반포 만곡부의 편수위 연구)

  • Lee, Jong-Kyu;Kim, Joo-Young;Park, Hyun-Jin;Kang, Ji-Ye
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.810-814
    • /
    • 2009
  • Two dimensional steady and unsteady numerical models are applied to bend reaches of the Lower Han River and the superelevation at the Ichon-Banpo bend area of Han River was observed. The flow characteristics in the meandering river are complicated due to the effects of the centrifugal force. The centrifugal force makes the outside water surface level increase and the outside velocity decrease. To study this complex flow studying two dimensional flow is important and useful to design flood control countermeasures, the analysis of sedimentation and the site selection of intake structures. Especially, the superelevation between inside and outside of the bend should be considered to determine the height of embankment. In this study, the water surface elevations in both bank sides of the bend were measured in two reaches during floods in 2007 and 2008. And then the two-dimensional simulation using RMA-2 model was carried out. The upstream and downstream boundary conditions on bend reaches were determined by FLDWAV which is one-dimensional unsteady model. Finally, the observed data are compared with simulation results and the results of the several superelevation formulas, and the flow characteristics of the bend are discussed.

  • PDF

Estimation of Superelevation in Mountainous River Bends (산지하천 만곡부의 편수위 산정)

  • Park, Sang Doeg;Lee, Seung Kyu;Shin, Seung Sook;Cho, Jaewoong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1165-1176
    • /
    • 2014
  • In a river bend the water surface is inclined by the centrifugal force toward the transverse section. If channel slope and flow rate increase, the gradient is rising generally. There are lots of the flood damage at the bends of mountain river because the flood water levels have exceeded frequently the levee levels which are added a free board to the design flood water level. Therefore the superelevation should be considered in designing the mountainous river bend. In present study it was proposed to estimate the superelevation at the bend of mountain river and the superelevation coefficient defined from multiplying the sub-factors. The values of the influence factors for the superelevation coefficient were suggested from analyzing the superelevation measured at the bends in Yangyangnamdae river and the hydraulic experiments in gravel-bed channel with a $90^{\circ}$ bend. The applicability of these methods to estimate the superelevation at the bends in mountain river was verified by the superelevation measured at the bend in Naerin river.

Estimation of the Water Surface Slope by the Flood Discharge with River Bend Curvature (하천 만곡률과 홍수량에 따른 수면경사도 산정)

  • Choi, Han-Kyu;Lee, Mun-Hee;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.129-137
    • /
    • 2006
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

  • PDF

A Study on the Scour Depth Equation in Bight River (하천 만곡부에서의 세굴심 산정식에 관한 연구)

  • Choi, Han-Kuy;Park, Je-Wan;Park, Soo-Jin
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.47-55
    • /
    • 2012
  • Currently, we only estimate the average flood water level by the cross-sections of the river using one-dimensional numerical analysis when establishing the basic plans. However, the reliability decreases when it comes to the river bend. In river bend, the difference of water-level between the inside and the outside of the river arises by centrifugal force. And it is estimated less than what it could be estimated when establishing the plan with average estimate of flood level. It is apprehended that the exterior of the river will be under-constructed when establishing the scour depth only with the mean depth. In the case of local scour of the abutment, it is difficult to estimate its depth precisely, and it tends to be over-estimated in the case of the empirical formulas. Therefore, the modification considering the deviation of the water depth of the exterior of the river bend is needed. In observing the deviation of each formula in river bend, it is found: Andru's formula for 58%, followed by the Laursen's for 26%, and the C.S.U's for 17% in pier, while it is 44% for Froehlich's formula in abutment. Under the 500CMS of the flood discharge, the deviation of the scour depth between pier and abutment was about 10 %. However, in further flood discharge, it shows 24~58% the biggest in deviation of piers. It is concluded that the scour depth estimate should be done with 2-dimensional numerical analysis.

  • PDF

Development of Transverse Bed Slope Model for Nonuniform Sand Bed at River Bend (만곡부 혼합입경 하상횡경사 모형의 개발)

  • 최종인;고재웅
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.177-186
    • /
    • 1996
  • The analytical approach to determine transverse sand bed slope at river bend are based on two phases that the flow is considered as fully developed flow and the bed is fluvial having bed load. All existing methods are theoretically derived from the initiation of motion of the particles at river bed. They assume that the Shields parameter has a constant value of 0.06. In this study, the variability of Shields parameter due to the differences of shape of grain size distribution is considered. Therefore the parameter is not a constant, 0.06, but depends on the shape of the grain size distribution. This result gives good agreement to estimate transverse bed slope with actual field data at river bend.

  • PDF

Estimation of the Water Surface Slope by the River Bend Curvature and Flood Discharge (하천 만곡률과 홍수량에 따른 수면경사도 산정)

  • Choi, Han-Kuy;Lee, Mun-Hee;Baek, Hyo-Sun;Park, Soo-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.65-71
    • /
    • 2007
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

Estimation methods of maximum scour depth in steep gravel-bed bend channel (급경사 자갈하상 만곡수로의 최대세굴심 산정공식 평가)

  • Cho, Jaewoong;Nam, A-Reum;Woo, Tae Young;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.529-536
    • /
    • 2016
  • The existing methods to estimate the maximum scour depth in the bend of steep gravel bed channel have been evaluated by the hydraulic movable-bed experiments. In the $90^{\circ}$ bend steep-slope channel paved with the fluvial gravels which are uniform in size and have a mean diameter of 43mm, the maximum scour depths due to the flow discharge and the gradient of bed slope have been investigated and compared with the scour depth computed from the equations. The local scour has occurred in conditions that the bed slope is steeper than 0.02 and the $F_r$ is greater than 0.95. Except Lacey's equation and Zeller's equation, the existing methods computing the maximum scour depth overestimate the maximum scour depth in the steep channel with the very coarse gravel bed. However, Lacey's equation with the bed material size and Zeller's equation considering the approach channel gradient and the bend angle may be relatively used to estimate the scour depth in bend of the steep gravel-bed river.

Effects of Submerged Spur Dikes on the Ecosystem and Bed Deformation in Youngcheon River Bend (영천강 만곡부의 저수수제군이 생태계 및 하상변동에 미치는 효과)

  • Kim, Ki Heung;Lee, Hyeong-Rae;Jung, Hea Reyn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.137-153
    • /
    • 2013
  • In order to assess the effects of ecosystem and landscape in around spur dikes, this study had carried out monitoring on the changes of ecosystem and morphologic characteristics in around spur dikes that had been settled in bend of Youngcheon River. The study site was a short reach with length 190m, spur dikes were installed in March, 2008. Monitoring of the site had been started in May 2008 and had been completed September 2011. The results are as follow ; 1) Spur dikes that were installed for channel stabilization are performing effectively hydraulic functions at flooding time. 2) Spur dikes that were installed in water colliding front of river bend brought about sediment deposition between those and formed pools around front of those. Therefore, it was verified to create various physical characteristics in the aspect of channel topography and flow consequently. 3) The survey results that was carried out in October 2008 showed to emerge 25 species of plant, 9 species of fish and 17 species of benthic macroinvertebrates, but the survey results in October 2010 showed to emerge 74 species of plant, 12 species of fish and 19 species of benthic macroinvertebrates. In particular, plant species that emerged in 2011 increased about three times more than those in 2008.

Analysis of the vegetation effects on the flow in Chopyeong Island of the Imjin River using a HEC-RAS 2D model (HEC-RAS 2D 모형을 이용한 임진강 초평도 식생이 흐름에 미치는 영향 분석)

  • Lee, Du Hana;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.575-586
    • /
    • 2023
  • River vegetation has important functions such as providing a habitat for the river ecosystem and physical stability of the river bank. It also has adverse effects such as aggravating flood damages due to the increase in roughness coefficient and drag forces. River vegetation management is very important in finding a balance between flood and ecological management. There are still many uncertainties about the effect of vegetation on rivers. In this study, in order to analyze the effect of vegetated flow, the flow patterns according to the vegetation roughness are analyzed through a two-dimensional unsteady flow model for Chopyeong island of the Imjin River. According to the results of the 2D flow analysis using the HEC-RAS 2D model, the velocity distribution in the bend of the Imjin River was greatly affected by the vegetation roughness of Chopyeong Island. The formation of the main flow outside the bend of Chopyeong Island during flooding is presumed due to the influence of tree and grass on Chopyeong Island. If tree are distributed throughout Chopyeong Island, the velocity outside the bend is expected to be higher. River vegetation causes the effect of raising the water level, and could cause a change in the velocity distribution.