This study was attempted to find best fitted distribution and the equations for probable maximum flow with the evaluation of parameters by the method of moment for the rat- ional design of hydraulic structures in the annual exceedance series. Six subwatersheds were selected as studying basins along Geum River basin. The results obtained through this study were analyzed and summarized as follows. 1. Fitted probability distribution was showed in the order of Three Parameter Lognorm al, Type 1 Extremal, Exponential, Pearson Type III, and Log Pearson Type I distribu- tion as the results of x$^2$ goodness of fit test. 2. Kolmogorov-Smirnov test showed in the order of Three Parameter Lognormal, Exp- onential' Pearson Type III, Log Pearson Type III and Type 1 Extremal distribution for the fitted probability distribution. 3. It can be concluded that Three parameter Lognormal distribution is a best fitted one among some other distributions out of respect for each both tests. An Exponential distribution was proposed as a suitable one by Chow, V.T. showeci lower fittness than that of Three Parameter Lognormal in Geum River basin. 5. Probable flood flow equations followins the return periods for each station were obt- ained by Three Parameter Lognormal distribution. 6. It is urgently essential that best fitted probability distribution should be established for the annual exceedance series in the main river systems of Korea.
Stochastic simulation of hydrologic data has been widely developed for several decades. However, despite the several advances made in literature still a number of limitations and problems remain. In the current study, some stochastic simulation approaches tackling some of the existing problems are discussed. The presented models are based on nonparametric techniques such as block bootstrapping, and K-nearest neighbor resampling (KNNR), and kernel density estimate (KDE). Three different types of the presented stochastic simulation models are (1) Pilot Gamma Kernel estimate with KNNR (a single site case) and (2) Enhanced Nonparametric Disaggregation with Genetic Algorithm (a disaggregation case). We applied these models to one of the most challenging and critical river basins in USA, the Colorado River. These models are embedded into the hydrological software package, Pros and cons of the models compared with existing models are presented through basic statistics and drought and storage-related statistics.
최근 기후변화로 인해 유역의 기상자료에 대한 반응이 달라지고 있어 강우-유출 모의에 대한 연구는 중요해지고 있다. 아울러 최근 기계학습 기법에 대한 높은 관심으로 이를 통한 강우-유출 모의 역시 활발하게 증가하고 있으나 기계학습 모형이 전통적으로 사용되어온 개념적 모형에 비해 활용성이 높은지는 아직 확실치 않다. 본 연구에서는 개념적 모형인 GR6J와 기계학습 모형인 Random Forest 성능을 한국 전역의 38개 계측 유역에 대해 계측 유역 예측기법과 미계측 유역 예측기법을 이용해 평가하였다. 먼저 계측 유역 적용기법 평가를 위해 각 모형을 관측 일 유량자료에 학습시키고 분리된 평가기간에 대한 모의성능을 비교하였다. 이후 미계측 유역 모의성능 평가를 위해 인접성 기반 지역화 방법을 Leave-One-Out Cross-Validation (LOOCV)을 이용해 평가하였다. 그 결과 계측 유역 평가에서는 Random Forest 기법이 GR6J 모형보다 일관되게 높은 성능을 보였다. 학습된 데이터를 출력 값으로 재생산하도록 구조화되어 있는 기계학습 기법이 개념적 이론을 통한 모형보다 높은 재현성을 갖기 때문으로 판단된다. 하지만 Random Forest 모형의 성능은 미계측 유역의 예측기법으로는 재현되지 않았고 GR6J 모형보다 성능이 더 낮은 것이 확인되었다. 본 연구는 기계학습 모형은 계측 유역의 유출예측에는 적용성이 높을 수 있으나 미계측 유역에 대한 적용가능성은 전통적인 개념적 모형보다 낮을 수 있음을 제시한다.
This study is objected to assess the recharges of phreatic aquifers in the south Korea. The water level data of the national ground-water monitoring network were analysed by PCA(Principal Component Analysis), and classified to 8 types. The recharge were estimated by ‘water-level change method’ on basis of the classified types and compared with the previous methods(hydrograph separation methods) on basis of 4 river basins. The recharge were various type by type and site by site. But the recharge estimated by this study were consistent with that of the other studies.
This study was to analyse the correlations between pumping rate to irrigated area and rainfall amount in the Geum river basins. A total of 84 pumping stations and field data from the paddy of 28,772 ha were introduced to the analysis. The results showed that the pumping volume was highly correlated to the rainfall during the irrigation period and irrigated area. But, it was difficult to determine the exact correlation factors, because of the lack of data like the efficiency of water in the paddy field.
북한은 70년대 후반 들어 더욱 심각해진 식량문제를 해결하기 위해 개별 농가의 텃밭이나 뙈기밭, 기업이나 공장에서 운영하는 부업밭 개간을 권장하였다 이러한 농지개간은 90년대의 자연재해로 인한 식량난이 악화되자 산지와 간석지로 확대되기 시작하였다. 특히 산지개간의 경우 고도가 높아지고 급경사지로 개간이 진행됨에 따라 이로 인한 지표침식 문제들은 최근의 현지를 방문한 인사들이나 인공위성 영상을 통해서 직ㆍ간접적으로 알려지거나 파악되고 있다. (중략)
한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
/
pp.1073-1080
/
1996
The impact of the input and output probability distributions on the performance of neural networks to forecast two year peak stream flow (cubic meters per second) is examined for two major river basins of the US. The neural network input consisted of drainage area(square kilometers ) and elevation (meters). When data are normally distributed , the neural networks predict much better than when the data are non-normal and have larger tails in their distributions.
본 연구에서는 한강유역의 1일, 2일, 3일 연최대강우자료를 대상으로 L-모멘트법을 이용한 지점 빈도해석과 지역 빈도해석을 실시하여 그 결과를 비교하였다. 지역빈도해석을 실시하기 위하여 한강유역을 남한강, 북한강, 한강하류부 유역의 3개 소유역으로 분할하고, 각 유역에 대한 자료의 이산도 및 동질성을 검토하였으며, 각 소유역에 대하여 여러 분포형을 적용한 결과, 남한강유역과 한강하류부 유역은 lognormal 분포형, 북한강 유역은 gamma-3 분포형이 적정분포형으로 선정되었다. 지역빈도해석과 지점빈도해석을 통하여 선정된 확률분포형을 이용, Monte Carlo 모의를 수행하였으며, 재현기간에 따른 상대편의와 상대제곱근 오차를 산정하였다. 지역빈도해석과 지점빈도해석을 비교한 결과 상대제곱근오차에 있어서 지역빈도해석을 수행한 경우가 지점빈도해석에 비해 그 결과가 우수하였으며, 재현기간이 커질수록 그 차이는 현저하게 나타났다. 따라서, 한강유역의 강우량에 대해서 지역빈도해석 수행함이 지점빈도해석에 비해 우수하다는 결론을 얻게 되었다.
Deep learning models, especially those based on long short-term memory (LSTM), have presented their superiority in addressing time series data issues recently. This study aims to comprehensively evaluate the performance of deep learning models that belong to the supervised learning category in streamflow prediction. Therefore, six deep learning models-standard LSTM, standard gated recurrent unit (GRU), stacked LSTM, bidirectional LSTM (BiLSTM), feed-forward neural network (FFNN), and convolutional neural network (CNN) models-were of interest in this study. The Red River system, one of the largest river basins in Vietnam, was adopted as a case study. In addition, deep learning models were designed to forecast flowrate for one- and two-day ahead at Son Tay hydrological station on the Red River using a series of observed flowrate data at seven hydrological stations on three major river branches of the Red River system-Thao River, Da River, and Lo River-as the input data for training, validation, and testing. The comparison results have indicated that the four LSTM-based models exhibit significantly better performance and maintain stability than the FFNN and CNN models. Moreover, LSTM-based models may reach impressive predictions even in the presence of upstream reservoirs and dams. In the case of the stacked LSTM and BiLSTM models, the complexity of these models is not accompanied by performance improvement because their respective performance is not higher than the two standard models (LSTM and GRU). As a result, we realized that in the context of hydrological forecasting problems, simple architectural models such as LSTM and GRU (with one hidden layer) are sufficient to produce highly reliable forecasts while minimizing computation time because of the sequential data nature.
The Planning characteristics of the canals linking river basins and estuary reservoirs have been reviewed in relation to the trend widening the areas of water resources planning. It has been also tried to justify the characteristics of the link canals in the history of irrigation development. It was concluded that the link canals were resulted from the most recent technology as far as irrigation systems were concerned, why these were long- and large-scale multipurpose canals ; the hydraulic heads of the link canals could be controlled easily ; and which consisted of open channels, pipelines and control reservoirs. The types and general characteristics of the canals have been reviewed, and the fundamental concept and characteristics in the planning of the canals have been described.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.