• Title/Summary/Keyword: river barrage

Search Result 101, Processing Time 0.029 seconds

Water Supply Capacity of the Keum River Barrage Dam Based on Inflow Scenario (유입량 시나리오에 따른 금강하구둑의 용수공급능력 분석)

  • Noh, Jae-Kyoung;Kim, Dae-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.499-502
    • /
    • 2003
  • Using the daily water balance model of the Keum River Barrage Dam, water supply capacity was analyzed. The scenario of reservoir inflow was selected to case with Daechung dam, case with no dam, case with Yongdam dams. Runoffs in 12 sub watersheds were simulated by the DAWAST model considered return flows.

  • PDF

Effects of Busan-Gimhae Precipitation Conditions on the Real Barrage Discharge in the Nakdong River Basin (부산-김해 강우조건이 낙동강 유역 하구둑 실방류량에 미치는 영향)

  • Yoon, Han-Sam;Yoon, Chang-Ho;Yoo, Chang-Ill;Park, Jung-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.169-174
    • /
    • 2010
  • To obtain more accurate meteorological data for analyzing the river discharge characteristics at the Nakdong River Estuary, we investigated the characteristics of the release barrage discharge observed during the 13-year period from 1996 to 2008 and calculated the differences using meteorological data for the Busan and Gimhae weather stations. The river discharge estimated using a tank model was compared to the real river barrage discharge. We discussed the correlation between the discharge and the meteorological factors that affected the estuary water environment. This study found that total annual discharge from the Nakdong river basin for the 13 years was $272,653.3{\times}10^6\;m^3$/month. The largest monthly mean release discharge occurred in July at $73,212.9{\times}10^6\;m^3$/month (26.9% for the year), followed by August and September in that order with 22.0% and 18.9%, respectively.

A Method to Filter Out the Effect of River Stage Fluctuations using Time Series Model for Forecasting Groundwater Level and its Application to Groundwater Recharge Estimation (지하수위 시계열 예측 모델 기반 하천수위 영향 필터링 기법 개발 및 지하수 함양률 산정 연구)

  • Yoon, Heesung;Park, Eungyu;Kim, Gyoo-Bum;Ha, Kyoochul;Yoon, Pilsun;Lee, Seung-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.74-82
    • /
    • 2015
  • A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river. Direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Using the time series models the effect of river stage on groundwater level data was filtered out by setting a constant value for river stage inputs. The filtered data were applied to the hybrid water table fluctuation method in order to estimate the groundwater recharge. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.

Landsat 자료를 이용한 금강하류의 충적주 환경변화에 관한 연구

  • 장동호;지광훈;이봉주
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.2
    • /
    • pp.59-73
    • /
    • 1995
  • The study is focused on the analysis of geomorphological environment changes of alluvial bar in lower Kum river using satellite-based multitemporal/multisensor data. Landsat datas for environment changes analysis consists of Landset MSS(2 scenes) and Landset TM(7 scenes) acquired from 1979 to 1994. This study is to develop the analysis techniques for the environment change detection of using ratio, classification, false color composite etc, of Landsat data especially useful to the geomorphological study of tidal flats and river channels. The results of this study can be summarized as follows : 1. The lower Kum River alluvial bar have had rapid geomorphological changes after the construction of the temporary dam to block the river flowing in 1983. The most alluvial bar located in the river has both bankway growth, especially the allurival bar in the Lower Kum River had grown between 1983 to 1990. 2. After construction of the estuarine barrage, no remarkable geomorphological changes have been found in Kum River area but the growth and formation of new underwater bar has continued. The enormous materials was needed for the growth and formations of new underwater barrier oslands and bar would be supplied from the sea bottom and river sediment to diminish of stream velocity after construction of the estuarine barrage.

Numerical Modeling for Sedimentation Characteristics of the Lower Nakong River and Sediment Dredging Effects at the Nakdong River Estuary Barrage (낙동강 하류의 유사특성과 낙동강하구둑 준설효과에 관한 수치모의 연구)

  • Ji, Un;Julien, Pierre Y.;Park, Sangkil;Kim, Byungdal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.405-411
    • /
    • 2008
  • The Nakdong River Estuary Barrage (NREB) was constructed in 1987 to prevent saltwater intrusion and to provide the sustainable water supply in the upstream channel. Sediment dredging has been conducted to eliminate deposited sediments in the approached upstream channel of the NREB. Fluvial changes and sedimentation problems have been continued due to urbanization and development in the watershed as well as construction of the NREB. However, the sufficient field monitoring and researches for sedimentation characteristics and bed changes have not been performed after construction of the NREB. Therefore, bed elevation changes and seasonal sediment concentration distribution were analyzed using the quasi-steady state model with historical field data in this study. The water surface elevation changes with and without sediment dredging operation were calculated using the developed quasi-steady state model and finally the sediment dredging effects were evaluated.

A Case Study on the Implementation of a River Water Level Monitoring System using PLC(Programmable Logic Controller) and Public Telecommunication Network (PLC(Programmable Logic Controller)와 공중통신망을 이용한 하천수위감시시스템 구축 사례 연구)

  • Kim, Seokju;Kim, Minsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.4
    • /
    • pp.1-17
    • /
    • 2015
  • A river water level monitoring system which prevents salt water damages and effectively excludes floods has been developed to contribute efficient operation of Nakdong river estuary barrage. The system can be used for monitoring upstream conditions more quickly and do appropriate responses over changes. Telemetry and telecontrols using PLCs have been built at the three sites that directly influence on the operation of barrage gates, and are linked to Nakdong river estuary barrage's IOS (Integrated Operation System) through public communication networks. By using PLC, the system can achieve even higher reliability and versatility than before as well as easy management. By power control devices, we can remotely control the power of PLCs to treat the minor troubles instantly without going on-sites. The power control devices also save data in preparation for the cases of communication failures. The system uses ADSL (FTTH) as a main network between SCADA server and PLCs, and CDMA (M2M) as a secondary network. In order to compensate security vulnerabilities of public communication network, we have installed the VPNs for secure communication between center and the observation stations, just like a dedicated network. Generally, river water level observations have been used custom-manufactured remote terminals to suit their special goals. However, in this case, we have established a system with open architecture considering the interface between different systems, the ease of use and maintenance, security, price, etc.

DEVELOPMENT OF A REAL-TIME FLOOD FORECASTING SYSTEM BY HYDRAULIC FLOOD ROUTING

  • Lee, Joo-Heon;Lee, Do-Hun;Jeong, Sang-Man;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.113-121
    • /
    • 2001
  • The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.

  • PDF

A Case Study on the Implementation of Integrated Operation System of the Nakdong River Estuary Barrage Due to the Drainage Gate Extension (낙동강 하굿둑의 배수문 증설에 따른 통합운영시스템의 구축 사례에 대한 연구)

  • Kim, Seokju;Lim, Taesoo;Kim, Minsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.1
    • /
    • pp.183-199
    • /
    • 2015
  • Due to the Four Major Rivers Restoration Project, Nakdong River Estuary Barrage's designed flood quantity has been largely increased, and this has caused to construct several drainage gates at the right side of Eulsukdo island to secure the safety of downstream river area. For successful functioning of Nakdong River Estuary Barrage, such as flood control, disaster prevention, and the securing of sufficient water capacity, drainage gates at the both sides of island have to operate systematically and reliably. To manage this under restricted personnel and resources, we have implemented the IOS (Integrated Operation System) by integrating previous facilities and resources via information and communication technologies. The IOS has been designed to have higher availability and fault tolerance to function continuously even with the partial system's failure under the emergency situation like flood. Operators can use the system easily and acknowledge alarms of facilities through its IWS (Integrated Warning System) earlier. Preparing for Integrated Water Resources Management and Smart Water Grid, the architecture of IOS conformed to open system standards which will be helpful to link with the other systems easily.