• Title/Summary/Keyword: river barrage

Search Result 101, Processing Time 0.026 seconds

Temporal and Spatial Variability of Phytoplankton Communities in the Nakdong River Estuary and Coastal Area, 2011-2012 (2011-2012년 낙동강 하구 및 연안역에서 식물플랑크톤 군집의 시·공간적 변화)

  • Chung, Mi Hee;Youn, Seok-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.214-226
    • /
    • 2013
  • To understand the changing patterns in phytoplankton communities, we conducted 12 surveys along the Nakdong River, its estuary, and adjacent coastal areas between January 2011 and October 2012 (during the period of barrage construction and sediment dredging). Monthly precipitation ranged from 0 to 502 mm during the survey period, and salinity ranged between 0.1 psu and 0.3 psu in the Nakdong River, regardless of the depth, indicating no seawater influence, while salinity showed large seasonal fluctuations in the estuarine and coastal station, ranging from 0.1 psu to 34.8 psu. A total of 402 phytoplankton species were identified, 178 species from the river and 331 species from the estuary and coastal areas. Phytoplankton standing crop increased in 2012 compared to that in 2011, and was found to be highest in the river, followed by the estuary and coastal areas. Among the top 20 species in frequency of occurrence and dominance, Stephanodiscus spp., Aulacoseira granulata, and Aulacoseira granulata var. angustissima and Pseudo-nitzschia spp. were important species along the river-estuary-coastal areas. Diatoms were the major taxonomic group inhabiting the Nakdong river-estuary-coastal areas. A comparison of seasonal dominant phytoplankton species revealed a slight decrease over the years, from 13 species in 2011 to 10 species in 2012. However, no significant difference was found in the diversity of phytoplankton species between the two survey years, although lightly greater diversity was observed in the coastal areas than in the river and estuary. Cluster analysis with community composition data revealed that the community structure varied significantly in 2011 depending on the time of survey, while in 2012, it hardly showed any variation and was simpler. An increase in the phytoplankton standing crop, fewer dominant species, and simpler community structure in 2012 compared to those in 2011 are probably due to the rapid environmental changes along the Nakdong River. To investigate these ecological relationships, it is necessary to conduct further studies focusing on integrated analyses of biocenosis, including phytoplankton with respect to the changes in nutrient distribution, variation of freshwater discharge, and effect area of freshwater in the Nakdong estuary and adjacent coastal areas.

The Characteristics of Spatio-Temporal Distribution on Phytoplankton in the Nakdong River Estuary, during 2013-2015 (낙동강 하구역에서 2013-2015년 식물플랑크톤의 시·공간분포 특성)

  • Yoo, Man-Ho;Youn, Seok-Hyun;Park, Kyung-Woo;Kim, A-Ram;Yoon, Sang-Chol;Suh, Young-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.738-749
    • /
    • 2016
  • To understand the characteristics of the spatio-temporal distribution of phytoplankton after barrage construction in the Nakdong River Estuary, this study investigated relevant environmental parameters and phytoplankton status based on bi-monthly samples collected from the Nakdong River Estuary itself from February 2013 to December 2015. Environmental parameters did not differ significantly across these years but did vary between zones and seasons. The results suggested that the upper zone was dominated by fresh-water diatoms, green algae, and blue-green algae, whereas the lower zone was mostly dominated by dinoflagellates. The presence of Stephanodiscus spp., Asterionellopsis formosa, and Microcystis spp. in the upper zone was related to the inflow of freshwater discharge by artificial control of dyke gates. The dominant phytoplankton species in this zone were dependent on temperature, wind speed, DIP, and DIN, while those in the lower zone were mostly dependent on nutrients and wind speed. In addition, at the lower zone, there were negative correlations between Prorocentrum donghaiense, DIN, and wind speed, with its abundance being higher during the summer than other seasons. Analysis of temporal variations did not indicate any significant differences in the upper zone but did reveal variations among seasons at the lower zone. Except in 2014, the lower zone could be divided into periods dominated by diatoms (October-April) and dinoflagellates (June-August). These results suggest that the characteristics of the phytoplankton community were influenced by changes in the inflow of freshwater species and nutrients given the difference in the range affected by freshwater discharge.

Effect of Freshwater Discharge on the Nakdong River Estuary: Mooring Observations of Water Temperature and Salinity (낙동강 하구의 담수 방류와 표층 수온 및 염분 반응 : 계류형 센서 연속관측 결과)

  • Kim, Sangil;Youn, Seok-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.89-95
    • /
    • 2019
  • Mooring observations of water temperature and salinity were conducted to investigate the effects of freshwater discharge patterns on the mouth of Nakdong River from April 2017 to March 2018. More than $500-1000m^3\;s^{-1}\;d^{-1}$ of freshwater was frequently discharged into the estuary throughout the rainy season, but less than $200m^3\;s^{-1}\;d^{-1}$ was discharged through the normal season. Sluice gates of the estuarine barrage operated depending on the tide level during spring tide, but they were constantly open during neap tide. Water temperature and salinity fluctuated regularly with intermittent discharges of freshwater, whereas they were stable while freshwater discharge was continuous. Mean salinity was 29 during the study period. Salinity exceeded the mean value in the normal season and rapidly recovered after a temporary reduction. In contrast, water with salinity below the mean value prevailed in the estuary for three months over the rainy season. These results indicate that water temperature and salinity were affected by the amount of freshwater discharge, as well as the frequency of discharge on a large scale and the time over which the freshwater discharge continued.

Mistakes Made, Lessons Learned: The Eulsukdo Wetland Restoration Program

  • Lineman, Maurice J.M.;Do, Yuno;Kim, Ji-Yoon;Joo, Gea-Jae
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1523-1536
    • /
    • 2014
  • Restoration is the process of reducing or reversing damage to an ecosystem so that it can function in its original manner. However, many restoration programs do not achieve this. In the Nakdong Estuary, the largest migratory nesting site in the center of the East Asian-Australasian flyway, an estuarine barrage was constructed in the 1980s that required site restoration following its completion in 1987 and the expansion of several large industrial complexes(Noksan and Jangrim) and a residential development(Myeongji). The goal of the restoration was to restore the function of the wetland to its pre-disturbance state. To achieve this, a restoration program was designed consisting of three stages. The first stage(1993-1995), saw the construction of three artificial wetlands(Shinhori, Daemadeung, and Eulsuk), the second(2003-2005) involved the dredging and returning of farmed lands to their natural state, and the third(2008-2012) focused on the rehabilitation and vegetation development of the wetlands. However, the project has not achieved all of the desired goals, and it is an example of the lapses in ecological restoration following anthropogenic disturbance. Issues that resulted in an incomplete restoration included the timing of the stages, noncompliance with the restoration plan, not directly monitoring the restoration or continuing the monitoring following completion of the development project, and the political subversion of the restoration plan. For the success of the restoration plan, it is necessary to avoid mistakes such as inconsistent monitoring, unequal levels of stakeholder involvement, and political interference.

Characterization and Numerical Taxonomy of Heterotrophic Bacterial Community in Naktong Estuarine Ecosystem (낙동강 하구 생태계의 종속영양세균의 군집구조 분석 및 수리학적 분류)

  • 귄오섭;조경제
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.444-449
    • /
    • 1992
  • A total of 858 heterotrohic bacteria were isolated and analyzed hy numerical method to investigate the heterotrophic hacterial community structure in Naktong Estuary. Although the values of H' (Shannon's diversity index). ranged between 1.54 and 3.49. were similar with those of the data hefore the construction of Naktong River barrage, however J' (evenness index. 0.31-0.80) was reduced. Physiological tolerance index for water temperature ($P_{s}$) was high at St.l and 2 whose depthes arc shallower than the other stations. and indices for pH ($P_{h}$) and salinity ($P_{s}$) were high at St. 2. 3. 4 where freshwater and seawater arc mixed. The predominant clusters were identified as Aeromonas. Vihrio. Pseudomonas. Acinelobacter-Morexella. Alcaligenes. Flavobacterium. Micrococcaccae. and Enterohacteriaceae. The kinds nf the isolates were similar with the previous result. hut the dominant genus was changed. These results suggest that the environmental changes in Naktong Estuary affect the hacterial physiological adaptation rather than the composition of heterotrophic hactcrial community.

  • PDF

Numerical Analysis of the Effect on the Flood Level Increasement due to the Channel Contraction for Sedimentation Reduction at the Nakdong River Estuary Barrage (낙동강하구둑의 퇴사저감을 위한 하폭축소 방법이 홍수위 상승에 미치는 영향 분석)

  • Kim, Nam-Il;Jang, Eun-Kyung;Ji, Un;Yeo, Woon-Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.157-161
    • /
    • 2011
  • 낙동강하구둑 접근수로에는 상류로부터 유입되는 유사가 유속감소로 인해 하구둑 근처에서 퇴적되는 문제가 발생하고 있다. 퇴적되는 유사를 저감시키기 위한 방법으로 하구둑 건설이후 매년 일정한 통수능 확보를 위해 준설이 수행되어 왔다. 그러나 준설 방법은 많은 비용과 시간이 소모된다는 점에서 효율적이지 못하며, 이를 대체 할 수 있는 적절한 퇴사저감방안 연구가 지금까지 선행연구들을 통해 제안되고 있는 실정이다. 특히 하폭이 급격히 확대되어 유속 감소를 유발하고 유사 퇴적을 야기 시키는 하구둑 상류 2km에서 3km 지점의 하폭을 국부적으로 축소함으로써 효과적으로 퇴사를 저감시킬 수 있을 것으로 나타났다. 그러나 하폭축소로 인하여 홍수발생시 상류의 홍수위가 기존 조건에서 보다 상승할 수 있는 위험성이 있다. 따라서 본 연구에서는 하폭축소 방법으로 인해 발생할 수 있는 상류의 홍수위 상승 위험성을 1차원 수치모형인 HEC-RAS 모형을 이용하여 하폭축소 전 후의 수면곡선을 분석하고자 한다. 연구대상 영역은 낙동강하구둑 상류 12km 구포대교 지점까지이며 하폭축소 구간은 낙동강하구둑 상류 2km에서 3km로 하도 우안 구간의 하폭을 10% 축소하였다. 입력 자료는 낙동강유역 종합치수계획에 명시된 빈도별 유량 및 낙동강하구둑 수위 조건을 적용하였다. 모의결과 30년, 50년, 80년, 200년 빈도별 유량과 수위를 적용한 경우 최대 수위상승이 0.02m이하인 것으로 나타났으며, 500년 빈도의 경우 0.03m의 최대 수위상승 값을 확인할 수 있었다.

  • PDF

Changes of Distribution of Vascular Hydrophytes in the Nakdong River Estuary and Growth Dynamics of Schenoplectus triqueter, Waterfowl Food Plant (낙동강 하구의 수생관속식물의 분포 변화와 수금류(고니류)의 먹이식물인 세모고랭이의 성장 변화)

  • Kim, Gu-Yeon;Lee, Chan-Woo;Yoon, Hae-Soon;Joo, Gea-Jae
    • The Korean Journal of Ecology
    • /
    • v.28 no.5
    • /
    • pp.335-345
    • /
    • 2005
  • A study on changes on the distribution of vascular hydrophytes and the growth pattern of Schenoplectus triqueter (Scirpus triqueter) was undertaken at the Nakdong River estuary from 2002 to 2004. The change was due to physical alteration of the estuary for the past 25 years. These plant species are the major food sources for winter waterfowl. A total of 32 species of vascular hydrophytes from 17 families were found in the West Nakdong River (freshwater), the main channel of Nakdong River (freshwater) and the Nakdong River Estuary (brackish water). After the construction of the barrage on the estuary in 1987, the number of hydrophytes has remarkably increased to 17 species (5 species in 1985) in the main channel of the River. In particular, a community of Eurale ferox was found at the backwater wetland of the Daejeo side of the main channel. The introduced species of Eichhornia crassipes and Pistia stratiotes that were epidemic in 2001 at West Nakdong River was not found any more. The other species such as Nymphoides indica, Myriophyllum spicatum, Ruppia spp. were rediscovered. The large area (about 1,300ha) of Zostera spp. was the main sources of food for swans, but disappeared because of direct and indirect impacts of reclamation in the River estuary. Currently, there remains a small patch of Zostera spp. and about 250ha of S. triqueter. Schenoplectus triqueter grew mostly between April-September and tuber formed, between September-October. The growth of S. triqueter up to $60\sim80cm$ in length was observed in 5 sites out of the 7 sites in brackish area. Tubers of S. triqueter were eaten by waterfowls such as swans as winter food. In five sites, tubers took $44\sim57%$ of total biomass in October. Tubers were found in deep layers; $5\sim15cm$ (9%), $15\sim25cm$ (28%), $25\sim40cm$ (55%), below 40cm $(6\sim7%)$. The distribution of vascular hydrophytes has remarkably changed in the Nakdong River Estuary due to the reclamation of the area. In order to determine the extent of changes of the distribution of these plants and the carrying capacity of the area for waterfowl, an intensive research is urgently needed.

Characteristics of Fish Fauna in the Lower Geum River and Identification of Trophic Guilds using Stable Isotopes Analysis (금강하류의 어류상 및 안정동위원소 분석을 이용한 섭식길드 파악)

  • Yoon, Ju-Duk;Park, Sang-Hyeon;Chang, Kwang-Hyeon;Choi, Jong-Yun;Joo, Gea-Jae;Nam, Gui-Sook;Yoon, Johee;Jang, Min-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.34-44
    • /
    • 2015
  • Fish fauna, difference of stable isotope ratio between freshwater and seawater, and trophic guilds of freshwater fishes were investigated in the lower Geum River. The study was conducted in 2011, and total study area was about 30 km of 20 km upstream and 10 km downstream from the Geum River estuary barrage. Only freshwater fishes were used for analyzing trophic guilds, and discriminant function analysis (DFA) was utilized to reclassify trophic guilds based on stable isotope ratio. Fish fauna in freshwater and seawater areas were entirely different each other, but small number of migratory species such as Coilia nasus and Chelon haematocheilus occurred both areas. Other species were not collected in the different areas because they did not have physiological ability to adapt different salinity concentrations. Stable isotope ration of two areas were different considerably due to food sources. Estuary and seawater fishes uptake food sources originated from marine, and freshwater fishes were from freshwater and terrestrial. Some migratory species showed reverse stable isotope ratio. Even though they collected in freshwater, they showed stable isotope ratio of seawater. This is because ecological characteristics of each species. Trophic guilds of freshwater fishes were reclassified by DFA, and showed slight difference with literatures. However, because this result is related with ontogenetic shift of species, more studies are needed to explain exact and correct trophic guilds. Stable isotope ratio can be changed among regions, seasons and ontogenetic stage, thus we always consider these aspects when analyzing results to get a right answer.

Temporal and Spatial Variations of Primary Productivity in Estuary of Youngsan River and Mokpo Coastal Areas (영산강 하구역 및 목포 연안 해역 식물플랑크톤 1차생산력의 시.공간적 변화)

  • Lee, Yeon-Jung;Min, Jun-Oh;Shin, Yong-Sik;Kim, Sung-Hwan;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.327-336
    • /
    • 2011
  • Temporal and spatial variations of primary productivity were investigated in the estuary of Youngsan River and Mokpo coastal areas in 2009. After heavy rain, concentrations of ammonium, phosphate, and silicate increased at six stations in August. The torrential rainfall may cause an increase in nutrient concentrations during summer. There is no limitation of nutrients (except for February at the mid-Youngsan estuarine region YS2) but a potential phosphate limitation was apparent at all stations. Silicate depletion was observed at YS2 in February due to a massive diatom bloom. The trophic status of the Youngsan estuary and Mokpo coastal areas were inferred from an assessment of the primary productivity. In February and May, YS1 (upper Youngsan estuary site) and YS2, YS3 (near the Youngsan river estuary barrage), MP1 (upper Mokpo coastal region site) were appropriately assigned to the mesotrophic category. MP2 (mid-Mokpo coastal region site) and MP3 (outer site of Mokpo coastal region) were assigned to the oligotrophic category. All stations were classified to the oligotrophic status in November. In August, after heavy rain, Youngsan estuary stations maintained mesotrophic status. On the other hand, MP1 and MP2 were classified in the eutrophic category and MP3 to mesotrophic status. In particular, primary productivities of MP1 and MP2 were 9 and 7 times higher respectively than the standard of eutrophic status ($1,000-mgC\;m^{-2}d^{-1}$). These results suggest that a massive freshwater discharge from the Youngsan River estuary should be considered a main factor in the occurrence of phytoplankton bloom in Mokpo coastal areas during summer. Seasonal variations of primary productivity are closely related with depth-integrated Chl. a.

Annual Population Variation and Identification of Antibiotic-Resistant Bacteria in the Lower Lake Geumgang (금강호의 항생제 내성세균의 분포 및 동정)

  • Bae, Myoung-Sook;Choi, Gang-Guk;Park, Suhk-Hwan;Choi, Moon-Sul;Lee, Geon-Hyoung
    • The Korean Journal of Ecology
    • /
    • v.27 no.5
    • /
    • pp.283-289
    • /
    • 2004
  • This study was conducted to evaluate the annual population variation and identification of antibiotic-resistant bacteria in the lower artificial Lake Geumgang from January to December, 2002. Samples were taken from the surface waters at 3 stations near the estuarine barrage. The results were as follows; the population densities of heterotrophic bacteria varied from 4.1±1.0×10² to 6.7±1.1×10³ cfu ml/sup -1/ during the investigation periods. The population densities of antibiotic-resistant bacteria ranged from 1.5±0.7×10 to 4.3±0.3×10³ cfu ml/sup -1/ for ampicillin; from 0 to 6.4±0.4× 10² cfu ml/sup -1/ for chloramphenicol; from 0 to 2.8±0.3×10³ cfu ml/sup -1/ for gentamicin; from 0 to 4.5±1.0×10³ cfu ml/sup -1/ for kanamycin; and from 1.0±0.4 × 10 to 2.3±0.5×10³ cfu ml/sup -1/ for streptomycin, respectively. Of the sixty isolates, 90% were Gram negative. Dominant genera by 16S rDNA analysis were identified Aeromonas spp. (14 strains), Bacillus spp. (6 strains), Enterobacter spp. (4 strains), and Stenotrophomonas spp. (6 strains). These strains were clustered into 12 groups based on relatedness by average linkage method. Of the 60 isolates, 85% had the resistance to ampicilin and 32% were shown resistance to more than 2 kinds of antibiotics.