Kim, Ki-Pyoung;Kang, Ho-Keun;Choung, Choung-Ho;Park, Jae-Hong
Journal of Advanced Marine Engineering and Technology
/
제35권7호
/
pp.946-956
/
2011
The main objectives of this study are to analyze the leaked gas dispersion and quantify the potential overpressures due to vapor cloud explosions in order to identify the most significant contributors to risk by using Computational Fluid Dynamics (CFX & FLACS) for gas fuelled ships. A series of CFD simulations and analyses have been performed for the various gas release scenarios in a closed module, covering different release rates and ventilating methods. This study is specially focused on the LNG FGS (Fuel Gas Supply) system recently developed for the propulsion of VLCC crude oil carriers by shipyards. Most of work presented is discussed on the gas dispersion from leaks in the FGS room, and shows some blast prediction validation examples.
실제적인 산사태 대응조치 단계 이전에 산사태위험지수를 통하여 산사태 발생 위험도를 모니터링하고 예측하기 위하여, LAMP의 고해상도 강우와 토양수분 예측 자료를 DB화 하고, 산사태 연구자들의 연구대상 지역에 적합한 지도 투영법과 공간해상도로 변환하는 절차를 ArcGIS를 이용하여 마련하였다. 이를 위하여 ERA5 재분석 강수와 농촌진흥청 10m 깊이 토양수분자료를 이용하여 LAMP 모델 강수 및 토양수분 자료를 정량적 그리고 정성적으로 평가하여 모델의 특성을 파악하였다. 또한, LAMP 강우, 토양수분, 증발산 등의 결과 자료를 10m 초고해상도 ArcGIS 포맷 자료로 변환하는 과정을 실무적으로 상세히 기술하여, 국내 지역에서 WRF 모델의 NetCDF 자료를 ArcGIS로 이용자들이 손쉽게 변환할 수 있도록 기술적 편의를 제공하였다.
The extinction crisis of local cities, caused by a population density increase phenomenon in capital regions, directly causes the increase of vacant houses in local cities. According to population and housing census, Gunsan-si has continuously shown increasing trend of vacant houses during 2015 to 2019. In particular, since Gunsan-si is the city which suffers from doughnut effect and industrial decline, problems regrading to vacant house seems to exacerbate. This study aims to provide a foundation of a system which can predict and deal with the building that has high risk of becoming vacant house through implementing a data driven vacant house prediction machine learning model. Methodologically, this study analyzes three types of machine learning model by differing the data components. First model is trained based on building register, individual declared land value, house price and socioeconomic data and second model is trained with the same data as first model but with additional POI(Point of Interest) data. Finally, third model is trained with same data as the second model but with excluding water usage and electricity usage data. As a result, second model shows the best performance based on F1-score. Random Forest, Gradient Boosting Machine, XGBoost and LightGBM which are tree ensemble series, show the best performance as a whole. Additionally, the complexity of the model can be reduced through eliminating independent variables that have correlation coefficient between the variables and vacant house status lower than the 0.1 based on absolute value. Finally, this study suggests XGBoost and LightGBM based machine learning model, which can handle missing values, as final vacant house prediction model.
기후변화로 증가하는 홍수피해를 대처하기 위해 여러 예측 방법들이 개발되고 있다. 홍수예측의 가장 핵심 요소는 홍수예측을 위한 수문모델의 입력자료로 사용하는 강우에 대한 정확하고 신속한 예측이다. 기존의 레이더 강우를 이용한 Nowcasting 보다 더 많은 대응시간을 확보할 수 있는 중소규모의 기후모델인 WRF(Weather Research Forecast)-ARW(Advanced Research WRF)를 소개하고, 이를 한반도 중부지방의 청미천 지역에 적용하려 한다. WRF-ARW의 적용기간은 2006년 7월 11일부터 7월 23일까지이며 이 결과를 청미천 유역에 있는 강우 관측소들(생극, 삼죽, 설성)의 실제 강우관측소의 관측 값과의 비교에 의해 이 강우 사상에 대해 Thomson scheme(미세물리)와 Kain-Frisch scheme(적운형 매개변수)의 조합이 청미천유역에서 가장 적합한 기후물리 조합이며 Mean Absolute Relative Error를 통해 세 개의 강우관측지점이 0.45 이상의 값을 나타내었다.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) infection is a severe and life-threatening disease in patients with community-onset (CO) pneumonia. However, the current guidelines lack specificity for a screening test for MRSA infection. Methods: This study was retrospectively conducted in elderly patients aged ${\geq}65years$, who had contracted CO-pneumonia during hospitalization at the Jeju National University Hospital, between January 2012 and December 2014. We analyzed the risk factors of MRSA in these patients and developed a scoring system to predict MRSA infection. Results: A total of 762 patients were enrolled in this study, including 19 (2.4%) with MRSA infection. Healthcare-associated pneumonia (HCAP) showed more frequent MRSA infection compared to community-acquired pneumonia (4.4% vs. 1.5%, respectively; p=0.016). In a multivariate logistic regression analysis, admissions during the influenza season (odds ratio [OR], 2.896; 95% confidence interval [CI], 1.022-8.202; p=0.045), chronic kidney disease (OR, 3.555; 95% CI, 1.157-10.926; p=0.027), and intensive care unit admission (OR, 3.385; 95% CI, 1.035-11.075; p=0.044) were identified as predictive factors for MRSA infection. However, the presence of HCAP was not significantly associated with MRSA infection (OR, 1.991; 95% CI, 0.720-5.505; p=0.185). The scoring system consisted of three variables based on the multivariate analysis, and showed moderately accurate diagnostic prediction (area under curve, 0.790; 95% CI, 0.680-0.899; p<0.001). Conclusion: MRSA infection would be considered in elderly CO-pneumonia patients, with three risk factors identified herein. When managing elderly patients with pneumonia, clinicians might keep in mind that these risk factors are associated with MRSA infection, which may help in selecting appropriate antibiotics.
1톤 이상의 인공우주물체 중 통제가 불가능한 인공우주물체의 추락은 지상에서의 인명 및 자산 피해가 발생할 가능성이 높기 때문에 국가적으로도 '인공우주물체 추락·충돌 대응 매뉴얼'에 따라 우주물체 추락 상황에 대한 위기를 관리한다. 따라서 인공우주물체 추락 상황 및 위험도를 판단하기 위한 신속하고 정확한 인공우주물체 추락 예측 정보를 제공하는 것이 매우 중요하다. 인공우주물체 추락 예측 방법은 국내외 여러 기관들에서 수행하고 있으나, 국가적으로 신뢰할 수 있는 국내 독자적인 툴의 확보는 국가 우주위험 재난 위기 상황에서 매우 필수적이다. 본 연구에서는 인공우주물체의 추락 상황에서 관측으로부터 생성된 우주물체의 접촉궤도요소 또는 해외에서 공개되는 평균궤도요소를 활용하여 인공우주물체의 추락 예상 시각 및 지점을 정밀하게 예측할 수 있는 소프트웨어를 개발하였다. 개발된 소프트웨어는 그레이스 1호(Grace-1) 위성과 그레이스 2호(Grace-2), 톈궁 1호(Tiangong 1) 위성과 창정 5B호 로켓 잔해(CZ-5B)와 같은 실제 통제 불가능한 인공우주물체의 추락 상황에서 독자적인 우주물체 추락 예측 정보를 제공하여 검증하였다.
2017년 전체 산업에서 건설업의 재해자와 사망자의 비중은 각각 25.2%, 29.6%로 가장 높은 실정이다. 특히 건축 현장의 안전사고가 지속적으로 증가하고 있어 경제적 손실이 매우 크다. 따라서 본 연구는 건축공사의 안전사고를 예방하기 위하여 공종별 안전위험도 평가지수를 개발하였고, 그 주요 연구결과는 아래와 같다. 첫째, 건축공사 현장의 안전사고와 관련된 위험요인을 설문조사와 면담조사를 통하여 17개 요인을 도출하여, 전문가 자문회의를 걸쳐 9개 항목(공종, 공사종류, 공정율, 계약금액, 층수, 공사기간, 안전교육, 현장근무일수, 날씨)을 제안하였다. 둘째, 건설현장의 안전사고 위험도 평가지수는 안전사고의 발생 비율과 발생강도를 토대로 공종별 평가지수 산정모델을 개발하였다. 셋째, 본 연구는 위험도 평가지수 평가모델을 검증하기 위하여 건설재해사고 통계자료를 조사 및 분석하여, 공종별 건설안전 위험 평가지수를 도출하였다. 또한 본 연구에서는 건설안전사고로 인한 인적손해를 사망자와 부상자로 구분하여 위험강도를 산출하였다. 공종별 안전사고 발생빈도와 발생강도에 따른 위험평가지수와 도출된 위험요인은 향후 건설안전 위험도 예측시스템 개발시 기초자료로 활용될 수 있을 것으로 기대된다.
Rao Song;Xiaojia Wu;Huan Liu;Dajing Guo;Lin Tang;Wei Zhang;Junbang Feng;Chuanming Li
Korean Journal of Radiology
/
제23권1호
/
pp.89-100
/
2022
Objective: To improve the N biomarker in the amyloid/tau/neurodegeneration system by radiomics and study its value for predicting cognitive progression in individuals with mild cognitive impairment (MCI). Materials and Methods: A group of 147 healthy controls (HCs) (72 male; mean age ± standard deviation, 73.7 ± 6.3 years), 197 patients with MCI (114 male; 72.2 ± 7.1 years), and 128 patients with Alzheimer's disease (AD) (74 male; 73.7 ± 8.4 years) were included. Optimal A, T, and N biomarkers for discriminating HC and AD were selected using receiver operating characteristic (ROC) curve analysis. A radiomics model containing comprehensive information of the whole cerebral cortex and deep nuclei was established to create a new N biomarker. Cerebrospinal fluid (CSF) biomarkers were evaluated to determine the optimal A or T biomarkers. All MCI patients were followed up until AD conversion or for at least 60 months. The predictive value of A, T, and the radiomics-based N biomarker for cognitive progression of MCI to AD were analyzed using Kaplan-Meier estimates and the log-rank test. Results: The radiomics-based N biomarker showed an ROC curve area of 0.998 for discriminating between AD and HC. CSF Aβ42 and p-tau proteins were identified as the optimal A and T biomarkers, respectively. For MCI patients on the Alzheimer's continuum, isolated A+ was an indicator of cognitive stability, while abnormalities of T and N, separately or simultaneously, indicated a high risk of progression. For MCI patients with suspected non-Alzheimer's disease pathophysiology, isolated T+ indicated cognitive stability, while the appearance of the radiomics-based N+ indicated a high risk of progression to AD. Conclusion: We proposed a new radiomics-based improved N biomarker that could help identify patients with MCI who are at a higher risk for cognitive progression. In addition, we clarified the value of a single A/T/N biomarker for predicting the cognitive progression of MCI.
본 연구에서는 환자의 중증도 분류 및 인체 주요 장기의 상태 예측을 위하여 APACHE II(Acute Physiology And Chronic Health Evaluation) 기반 CDSS 도구인 CAOPI(Computer Aided Organ Prediction Index) 시스템을 제안한다. 기존 ICU 환자의 중증도 평가방법은 APACHE II를 이용하여 특정 시점의 중환자 위험도를 특정한 시점 데이터를 이용하여 산출하는 방식이었으나, 실시간으로 변화하는 환자의 상태에 맞춰 조치를 취하는데는 한계가 있다. CAOPI 시스템은 중환자실에 입실하는 환자들의 질병 중증도를 정확히 분류하고, 환자의 사망예측 뿐만 아니라장기 상태를 시각화 하여 위험도를 수치화 하였다. 또한 위험도를 특정 장기별로 구분하여 담당의 사가 환자의 상태에 맞는 맞춤형 응급조치를 취할 수 있도록 설계 및 개발 하였다.
이 논문은 대한민국 해양사고 예보 시스템 (K-MACFOS)을 개발하기 위한 해양사고 수량화 D/B (N-D/B) 구성과 분석에 관하여 기술하였다. K-MACFOS의 주목표는 일기예보와 같이 해양사고의 예측건수와 위험수준을 방송하기 위한 것이다. 해양사고 데이터는 1990년부터 2000년까지 1년간 위도 33oN∼35oN와 경도 124oE∼127oE의 대한민국 서남해안 일대에서 발생한 총 724건을 수집하였고, 14가지 수량화변환 척도를 이용하여 양적 데이터로 변환하였다. 컬러 콘도-맵 가시화를 이용한 통계분석을 통하여 N-D/B의 유효성과 연구대상 해역의 사고특징을 검토하였다. 또한, 올바른 N-D/B 분석과 정확한 해양사고 건수 예측을 위한 최적 적용기간 선정 방법을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.