Chronic diseases including hypertension and its complications are major sources causing the national medical expenditures to increase. We aim to predict the risk of hypertension complications for hypertension patients, using the sample national healthcare database established by Korean National Health Insurance Corporation. We apply classification techniques, such as logistic regression, linear discriminant analysis, and classification and regression tree to predict the hypertension complication onset event for each patient. The performance of these three methods is compared in terms of accuracy, sensitivity and specificity. The result shows that these methods seem to perform similarly although the logistic regression performs marginally better than the others.
본 연구의 목적은 플랜트 건설사업에서 모듈러 공법의 적용이 확대됨에 따라 모듈러 플랜트에 대한 업무특성을 고려하여 위험을 평가하고 위험에 대응하기 위한 예비비를 예측하는 것이다. 연구방법은 모듈러 플랜트의 업무특성을 고려하여 위험의 영향을 평가하기 위한 모델(방법)과 예비비를 예측하기 위한 모델(방법)을 제시한다. 그리고 제시된 모델을 기반으로 모듈러 플랜트 건설사업 1곳을 사례로 선정하여 위험요인의 영향을 평가하고 예비비를 예측한다. 상기와 같은 목적과 방법에 따라 도출된 결과는 다음과 같다. 위험요인의 발생확률과 영향점수를 평가하여 중요 위험요인 15개를 선정하였다. 그리고 모듈러 플랜트의 특성을 고려하기 위하여 설계(E), 구매(P), 제작(F), 운송(T), 시공(C)단계로 업무를 분류하여 예측된 예비비는 기초사업비(610,503,596 천원) 대비 약 6.739%이며, 설계(E) 2.850%, 구매(P) 6.225%, 제작(F) 6.211%, 운송(T) 4.165%, 시공(C) 8.168%로 도출되었다. 본 모델은 위험관리를 위한 의사결정 과정에서 정량적인 결과를 도출하는 방법으로 활용된다.
The purpose of this research is to create an expert risk-based piping system inspection model. The proposed system includes a risk-based piping inspection system and a piping inspection guideline system. The research procedure consists of three parts: the risk-based inspection model, the risk-based piping inspection model, and the piping inspection guideline system model. In this research procedure, a field plant visit is conducted to collect the related domestic information (Taiwan) and foreign standards and regulations for creating a strategic risk-based piping inspection and analysis system in accordance with the piping damage characteristics in the petrochemical industry. In accordance with various piping damage models and damage positions, petrochemical plants provide the optimal piping inspection planning tool for efficient piping risk prediction for enhancing plant operation safety.
International Journal of Advanced Culture Technology
/
제7권1호
/
pp.8-13
/
2019
Despite technical advances in healthcare, the rates of hospital-acquired pressure injury (HAPI) are still high although many are potentially preventable. The purpose of this study was to determine whether tree-based prediction modeling is suitable for assessing the risk of HAPI in ICU patients. Retrospective cohort study has been carried out. A decision tree model was constructed with Age, Weight, eTube, diabetes, Braden score, Isolation, and Number of comorbid conditions as decision nodes. We used RStudio for model training and testing. Correct prediction rate of the final prediction model was 92.4 and the Area Under the ROC curve (AUC) was 0.699, which means there is about 70% chance that the model is able to distinguish between HAPI and non-HAPI. The results of this study has limited generalizability as the data were from a single academic institution. Our research finding shows that the data-driven tree-based prediction modeling may potentially support ICU sensitive risk assessment for HAPI prevention.
This paper confirmed the technical reliability of mobile-based sarcopenia prediction and monitoring system. In implementing the developed system, we designed using only sensors built into a smartphone without a separate external device. The prediction system predicts the possibility of sarcopenia without visiting a hospital by performing the SARC-F survey, the 5-time chair stand test, and the rapid tapping test. The Monitoring system tracks and analyzes the average walking speed in daily life to quickly detect the risk of sarcopenia. Through this, it is possible to rapid detection of undiagnosed risk of undiagnosed sarcopenia and initiate appropriate medical treatment. Through prediction and monitoring system, the user may predict and manage sarcopenia, and the developed system can have a positive effect on reducing medical demand and reducing medical costs. In addition, collected data is useful for the patient-doctor communication. Furthermore, the collected data can be used for learning data of artificial intelligence, contributing to medical artificial intelligence and e-health industry.
Kim, Yeon Soo;Jeon, Joongoo;Song, Chang Hyun;Kim, Sung Joong
Nuclear Engineering and Technology
/
제52권12호
/
pp.2836-2846
/
2020
During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier's law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries.
Recently, the rapid development of artificial intelligence technology, many studies are being conducted to predict the risk of heart disease in order to lower the mortality rate of cardiovascular diseases worldwide. This study presents exercise or dietary improvement contents in the form of a software app or web to patients with cardiovascular disease, and cardiovascular disease through digital devices such as mobile phones and PCs. LR, LDA, SVM, XGBoost for the purpose of developing "Life style Improvement Contents (Digital Therapy)" for cardiovascular disease care to help with management or treatment We compared and analyzed cardiovascular disease prediction models using machine learning algorithms. Research Results XGBoost. The algorithm model showed the best predictive model performance with overall accuracy of 80% before and after. Overall, accuracy was 80.0%, F1 Score was 0.77~0.79, and ROC-AUC was 80%~84%, resulting in predictive model performance. Therefore, it was found that the algorithm used in this study can be used as a reference model necessary to verify the validity and accuracy of cardiovascular disease prediction. A cardiovascular disease prediction analysis algorithm that can enter accurate biometric data collected in future clinical trials, add lifestyle management (exercise, eating habits, etc.) elements, and verify the effect and efficacy on cardiovascular-related bio-signals and disease risk. development, ultimately suggesting that it is possible to develop lifestyle improvement contents (Digital Therapy).
연구목적: 노후화된 발전기의 지속 가능한 운영을 위하여 효율적이며, 안전한 운영이 중요하다. 효율적 운영이란 경제적 관점이며, 안전한 운영은 발전 설비의 치명적 사고 발생에 대한 발생 이전의 사전 조치를 말한다. 그러므로 발전기의 지속가능 운영 모니터링을 위하여 관련된 센서 설치와 이를 기반으로 지속 가능에 대한 예측할 수 있는 모델에 대한 연구가 필요하다. 연구방법: 전기와 열에 대한 수요 예측, 엔진의 성능과 이상을 탐지하는 예측, 그리고 재 난 안전에 대한 예측 모델을 제시하였다. 이를 위하여 필요한 센서를 정의하였으며, 이를 기반으로 예측 모델을 각각 개발하여 수행하였다. 연구결과: 수요 예측 모델은 기존의 79%에서 90% 이상으로 예측 정확도를 향상시켰으며, 다른 2개 모델도 시스템의 지속가능한 안정적 운영을 지원하였다. 결론: 노후화된 발전설비의 지속가능 운영을 지원하기 위한 3가지 종류의 예측 모델을 개발하고 이를 제이비주식회사의 발전 설비에 실제 적용하여 운영하고 있다.
본 산업의 발달 및 화석연료 사용 증가로 인하여 지구온난화 및 기후변화가 가속화되어 기존보다 강도 높은 자연재해가 빈번하게 발생하고 있다. 전기시설물은 옥외에 시설된 경우가 많아 자연재해에 큰 영향을 받아 전기설비 관련 사고가 증가하는 추세이다. 본 논문에서는 국내의 기후변화에 따른 전기화재, 감전사고 및 전기설비사고의 통계 현황을 분석하여 기후변화와 연계한 위험도를 제시한다. 또한, 다양한 지역 별(광역시) 기후조건(온도, 습도)과 연계한 전기재해 데이터 분석을 통하여 각 지역의 월별 전기화재 위험도 분석 모델을 제시하고, 저압, 고압 설비의 자연재해에 대한 사고 위험도를 분석한다. 이러한 지역별, 설비별 위험도 분석 모델을 통하여 기초적인 전기재해 예측 모델을 제시하였다. 따라서 제시한 분석 데이터를 활용하여 향후 각 지역 및 전기설비를 대상으로 전기재해 위험도 예측 맵을 웹사이트나 스마트폰 앱을 통하여 전기안전 서비스를 제안할 수 있으며, 기후변화의 따른 자연재해에 대한 전기사고를 미연에 방지하기 위한 내성기준이나 전기설비의 내구성을 증가시키기 위한 노력이 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.