• Title/Summary/Keyword: risk of crushing

검색결과 16건 처리시간 0.024초

Evaluating shrinkage and mechanical performances of polypropylene hybrid fibers reinforced mortar

  • Bendjillali, Khadra;Bendjilali, Fatiha;Krobba, Benharzallah
    • Advances in materials Research
    • /
    • 제11권3호
    • /
    • pp.211-224
    • /
    • 2022
  • The shrinkage and the mechanical properties of polypropylene hybrid fiber reinforced mortar PHFRM were investigated in this study. Mortars were prepared with limestone crushing sand, Portland cement and polypropylene hybrid fibers PHF. Two types of virgin fibers, having the same length (30 mm) were used for reinforcing test mortars, fibers in diameter of 0.45 mm, used by PLAST BROS factory of Bordj Bou Arreridj (Algeria) for the fabrication of brooms (for household cleaning) and fibers in diameter of 0.25 mm, available on the market, having multiple applications. In this investigation, it was aimed to study the total and autogenous shrinkage, the flexural and compressive strength of mortars based on hybrid fibers. As a result, PHF have negatively affected the mortar workability. However, shrinkage risk was reduced and coarser fibers (PF45) were most effective for reducing shrinkage risk. The mechanical performances and the ductility of PHFRM were also enhanced.

군중 밀집 위험도 분석과 고위험 보행로 선정을 위한 수치지형도 기반 3D 모델링 (3D Modeling based on Digital Topographic Map for Risk Analysis of Crowd Concentration and Selection of High-risk Walking Routes)

  • 이재민;김임규;박상용;김현철
    • 한국안전학회지
    • /
    • 제38권2호
    • /
    • pp.87-95
    • /
    • 2023
  • On October 29, 2022, a very large number of people gathered in Itaewondong, Yongsan-gu, Seoul, Korea for a Halloween festival, and as crowds pushed through narrow alleys, 159 deaths and 195 injuries occurred, making it the largest crushing incident in Korea. There have been a number of stampede deaths where crowds gathered at large-scale festivals, event venues, and stadiums, both at home and abroad. When the density increases, the physical contact between bodies becomes very strong, and crowd turbulence occurs when the force of the crowd is suddenly added from one body to another; thus, the force is amplified and causes the crowd to behave like a mass of fluid. When crowd turbulence occurs, people cannot control themselves and are pushed into he crowd. To prevent a stampede accident, investigation and management of areas expected to be crowded and congested must be systematically conducted, and related ministries and local governments are planning to establish a crowd management system to prepare safety management measures to prevent accidents involving multiple crowds. In this study, based on national data, a continuous digital topographic map is modeled in 3D to analyze the risk of crowding and present a plan for selecting high-risk walking routes. Areas with a high risk of crowding are selected in advance based on various data (numerical data, floating population, and regional data) in a realistic and feasible way, and the analysis is based on the visible results from 3D modeling of the risk area. The study demonstrates that it is possible to prepare measures to prevent cluster accidents that can reflect the characteristics of the region.

폐콘크리트 재생골재로부터의 오염물질 용출에 대한 실험적 고찰 (Pollutant Release from Crushed Reclaimed Concrete)

  • 홍성구
    • 한국농공학회논문집
    • /
    • 제47권1호
    • /
    • pp.71-77
    • /
    • 2005
  • Recycling of reclaimed concrete (RC) is very important in the management of construction and demolition wastes. Most of RC is utilized for land-filling after crushing in this country. In this study, a series of elution experiments were conducted to investigate the type and amount of pollutants released from the crushed RC. Most water quality parameters including heavy metals and some organic compounds were below standards for drinking water. Some of heavy metals such as As, Cd, Pb, Hg were detected in 0.5 N H2S04 solution after 24-hour immersing RC, which was conducted for evaluating a long term release effect. The concentration of the heavy metals were higher than the drinking water standards. The results also showed significant adsorption of heavy metals by crushed Re. Potential risks, based on the result of this study were not high in using crushed RC for land-filling. Appropriate management of RC would reduce the risk, for example the separation of hazardous materials from construction wastes. Long term evaluations for the sites of land filled with RC would be required to assess the environmental impacts.

Worker Safety in Modular Construction: Investigating Accident Trends, Safety Risk Factors, and Potential Role of Smart Technologies

  • Khan, Muhammad;Mccrary, Evan;Nnaji, Chukwuma;Awolusi, Ibukun
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.579-586
    • /
    • 2022
  • Modular building is a fast-growing construction method, mainly due to its ability to drastically reduce the amount of time it takes to construct a building and produce higher-quality buildings at a more consistent rate. However, while modular construction is relatively safer than traditional construction methods, workers are still exposed to hazards that lead to injuries and fatalities, and these hazards could be controlled using emerging smart technologies. Currently, limited information is available at the intersection of modular construction, safety risk, and smart safety technologies. This paper aims to investigate what aspects of modular construction are most dangerous for its workers, highlight specific risks in its processes, and propose ways to utilize smart technologies to mitigate these safety risks. Findings from the archival analysis of accident reports in Occupational Safety and Health Administration (OSHA) Fatality and Catastrophe Investigation Summaries indicate that 114 significant injuries were reported between 2002 and 2021, of which 67 were fatalities. About 72% of fatalities occurred during the installation phase, while 57% were caused by crushing and 85% of crash-related incidents were caused by jack failure/slippage. IoT-enabled wearable sensing devices, computer vision, smart safety harness, and Augment and Virtual Reality were identified as potential solutions for mitigating identified safety risks. The present study contributes to knowledge by identifying important safety trends, critical safety risk factors and proposing practical emerging methods for controlling these risks.

  • PDF

폭약류의 철도수송에 따른 리스크 평가 (The Risk Analysis for the Rail Transport of Explosives)

  • 이재헌;송동우;이수경
    • 한국가스학회지
    • /
    • 제15권2호
    • /
    • pp.33-39
    • /
    • 2011
  • 이 논문은 철도를 이용한 폭약류의 운송 시 사고위험을 정량적으로 제시하였다. 사고유형은 역내에서의 사고와 수송 중의 사고로 분류하였다. 그리고 각각의 유형에 따라 열차의 탈선사고와 충돌사고의 빈도를 통해 사고빈도의 초기 값을 제시하였으며 ETA(Event Tree Analysis)를 통하여 사고빈도의 결과를 도출하였다. 피해영향평가는 TNT Equivalent method과 Probit analysis method를 이용하였다. 리스크 평가 결과 인구밀도가 높은 지역을 통과하는 폭약류의 철도운송은 사고발생시 높은 인명피해를 야기 시킬 수 있는 것으로 나타났다. 특히 유류와 복합된 사고의 경우 대형 폭발사고로 이어질 리스크를 가진 것으로 예측되었다. 결론적으로 폭약류의 위험물 수송 시 인구밀도가 높아 피해영향이 높은 지역의 경유를 줄이고 또한 리스크를 경감시킬 수 있는 대책을 강구해 위험요소와 사고빈도를 줄 일 필요성이 있을 것이다.

군중 밀집 위험도 시뮬레이션 기반의 인파 관리 안전대책 수립 (Establishment of Crowd Management Safety Measures Based on Crowd Density Risk Simulation)

  • 김현철;임형준;이승현;주영범;권순조
    • 한국안전학회지
    • /
    • 제38권2호
    • /
    • pp.96-103
    • /
    • 2023
  • Generally, human stampedes and crowd collapses occur when people press against each other, causing falls that may result in death or injury. Particularly, crowd accidents have become increasingly common since the 1990s, with an average of 380 deaths annually. For instance, in Korea, a stampede occurred during the Itaewon Halloween festival on October 29, 2022, when several people crowded onto a narrow, downhill road, which was 45 meters long and between 3.2 and 4 meters wide. Precisely, this stampede was primarily due to the excessive number of people relative to the road size. Essentially, stampedes can occur anywhere and at any time, not just at events, but also in other places where large crowds gather. More specifically, the likelihood of accidents increases when the crowd density exceeds a turbulence threshold of 5-6 /m2. Meanwhile, festivals and events, which have become more frequent and are promoted through social media, garner people from near and far to a specific location. Besides, as cities grow, the number of people gathering in one place increases. While stampedes are rare, their impact is significant, and the uncertainty associated with them is high. Currently, there is no scientific system to analyze the risk of stampedes due to crowd concentration. Consequently, to prevent such accidents, it is essential to prepare for crowd disasters that reflect social changes and regional characteristics. Hence, this study proposes using digital topographic maps and crowd-density risk simulations to develop a 3D model of the region. Specifically, the crowd density simulation allows for an analysis of the density of people walking along specific paths, which enables the prediction of danger areas and the risk of crowding. By using the simulation method in this study, it is anticipated that safety measures can be rationally established for specific situations, such as local festivals, and preparations may be made for crowd accidents in downtown areas.

Performance-based drift prediction of reinforced concrete shear wall using bagging ensemble method

  • Bu-Seog Ju;Shinyoung Kwag;Sangwoo Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2747-2756
    • /
    • 2023
  • Reinforced Concrete (RC) shear walls are one of the civil structures in nuclear power plants to resist lateral loads such as earthquakes and wind loads effectively. Risk-informed and performance-based regulation in the nuclear industry requires considering possible accidents and determining desirable performance on structures. As a result, rather than predicting only the ultimate capacity of structures, the prediction of performances on structures depending on different damage states or various accident scenarios have increasingly needed. This study aims to develop machine-learning models predicting drifts of the RC shear walls according to the damage limit states. The damage limit states are divided into four categories: the onset of cracking, yielding of rebars, crushing of concrete, and structural failure. The data on the drift of shear walls at each damage state are collected from the existing studies, and four regression machine-learning models are used to train the datasets. In addition, the bagging ensemble method is applied to improve the accuracy of the individual machine-learning models. The developed models are to predict the drifts of shear walls consisting of various cross-sections based on designated damage limit states in advance and help to determine the repairing methods according to damage levels to shear walls.

New Record of Thapariella anastomusa (Trematoda: Thapariellidae) Metacercariae in Northern Thailand

  • Phalee, Waraporn;Phalee, Anawat;Wongsawad, Chalobol
    • Parasites, Hosts and Diseases
    • /
    • 제56권1호
    • /
    • pp.49-52
    • /
    • 2018
  • The family Thapariellidae has been reported in only 3 countries since 1990. The objective of this study was to identify Thapariella anastomusa metacercariae in snails in Thailand based on morphological traits using a light (LM) and a scanning electron microscope (SEM). A total of 94 Filopaludina snails were collected and identified as 50 F. martensi martensi and 44 F. doliaris. Metacercariae of T. anastomusa were recovered from the snails by the crushing method. The overall prevalence was 22.3% (21/94), and the mean intensity was 17.0 per snail. The prevalence in F. martensi martensi was 24.0% (12/50) and F. doliaris 20.5% (9/44) with the mean intensity of 18.8 and 14.8 per snail, respectively. SEM revealed traits such as a concave ventral body and well-developed oral and ventral suckers. This study represents the first report of T. anastomusa in South East Asia. While LM and SEM observations provide novel insights into T. anastomusa metacercarial morphology and life history, the trematode's life cycle remains unclear. To date, there has been no report of T. anastomusa causing infections in humans. However, the snails F. martensi martensi and F. doliaris carrying the infective stages of T. anastomosa are frequently consumed by Thai people. This consumption, particularly uncooked snails, may present a risk of Thapariella infections in humans.

Seismic performance of RC frames retrofitted with haunch technique

  • Akbar, Junaid;Ahmad, Naveed;Alam, Bashir;Ashraf, Muhammad
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Shake table tests performed on five 1:3 reduced scale two story RC moment resisting frames having construction defects, have shown severe joint damageability in deficient RC frames, resulting in joint panels' cover spalling and core concrete crushing. Haunch retrofitting technique was adopted herein to upgrade the seismic resistance of the deficient RC frames. Additional four deficient RC frames were built and retrofitted with steel haunch; both axially stiffer and deformable with energy dissipation, fixed to the beam-column connections to reduce shear demand on joint panels. The as-built and retrofitted frames' seismic response parameters are calculated and compared to evaluate the viability of haunch retrofitting technique. The haunch retrofitting technique increased the lateral stiffness and strength of the structure, resulting in the increase of structure's overstrength. The retrofitting increased response modification factor R by 60% to 100%. Further, the input excitation PGA was correlated with the lateral roof displacement to derive structure response curve that have shown significant resistance of retrofitted models against input excitations. The technique can significantly enhance the seismic performance of deficient RC frames, particularly against the frequent and rare earthquake events, hence, promising for seismic risk mitigation.

Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

  • Lin, Feng;Li, Hongzhi
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1079-1089
    • /
    • 2017
  • Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA) of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking) and Limit State II (concrete crushing) when the PGAs were in a range of 0.8-1.1g and 1.2-1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.