Browse > Article
http://dx.doi.org/10.12989/amr.2022.11.3.211

Evaluating shrinkage and mechanical performances of polypropylene hybrid fibers reinforced mortar  

Bendjillali, Khadra (Laboratory of Structures Rehabilitation and Materials, Faculty of Civil Engineering and Architecture, University Amar Telidji)
Bendjilali, Fatiha (Faculty of Civil Engineering and Architecture, Hassiba Benbouali University)
Krobba, Benharzallah (Laboratory of Structures Rehabilitation and Materials, Faculty of Civil Engineering and Architecture, University Amar Telidji)
Publication Information
Advances in materials Research / v.11, no.3, 2022 , pp. 211-224 More about this Journal
Abstract
The shrinkage and the mechanical properties of polypropylene hybrid fiber reinforced mortar PHFRM were investigated in this study. Mortars were prepared with limestone crushing sand, Portland cement and polypropylene hybrid fibers PHF. Two types of virgin fibers, having the same length (30 mm) were used for reinforcing test mortars, fibers in diameter of 0.45 mm, used by PLAST BROS factory of Bordj Bou Arreridj (Algeria) for the fabrication of brooms (for household cleaning) and fibers in diameter of 0.25 mm, available on the market, having multiple applications. In this investigation, it was aimed to study the total and autogenous shrinkage, the flexural and compressive strength of mortars based on hybrid fibers. As a result, PHF have negatively affected the mortar workability. However, shrinkage risk was reduced and coarser fibers (PF45) were most effective for reducing shrinkage risk. The mechanical performances and the ductility of PHFRM were also enhanced.
Keywords
autogenous shrinkage; hybrid fibers; mechanical strength; mortar; polypropylene fibers; total shrinkage;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Das, C.S., Dey, T., Dandapat, R., Mukharjee, B.B. and Kumar, J. (2018), "Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete", Constr. Build. Mater., 189, 649-659. https://doi.org/10.1016/j.conbuildmat.2018.09.036   DOI
2 Fan, J., Shen, A., Guo, Y., Zhao, M., Yang, X. and Wang, X. (2020), "Evaluation of the shrinkage and fracture properties of hybrid fiber-reinforced SAP modified concrete", Constr. Build. Mater., 256, 119491. https://doi.org/10.1016/j.conbuildmat.2020.119491   DOI
3 Hameed, R., Turatsinze, A., Duprat, F. and Sellier, A. (2013), "Bond stress-slip behaviour of steel reinforcing bar embedded in hybrid fiber-reinforced concrete", KSCE. J. Civ. Eng., 17(7), 1700-1707. https://doi.org/10.1007/s12205-013-1240-x   DOI
4 Hosseini, S.A. (2020), "Application of various types of recycled waste materials in concrete constructions", Adv. Concr. Constr., Int. J., 9(5), 479-489. http://dx.doi.org/10.12989/acc.2020.9.5.479   DOI
5 Hussain, I., Ali, B., Akhtar, T., Jameel, M.S. and Raza, S.S. (2020), "Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene)", Case Studies Constr. Mater., 13, e00429. https://doi.org/10.1016/j.cscm.2020.e00429   DOI
6 Hsie, M., Tu, C. and Song, P.S. (2008), "Mechanical properties of polypropylene hybrid fiber-reinforced concrete", Mater. Sci. Eng. A, 494(1-2), 153-157. https://doi.org/10.1016/j.msea.2008.05.037   DOI
7 Yildirim, S.T., Ekinci, C.E. and Findik, F. (2010), "Properties of hybrid fiber reinforced concrete under repeated impact loads", Russ. J. Nondestruct. Test, 46(7), 538-546. https://doi.org/10.1134/S1061830910070090   DOI
8 Yousefieh, N., Joshaghani, A., Hajibandeh, E. and Shekarchi, M. (2017), "Influence of fibers on drying shrinkage in restrained concrete", Constr. Build. Mater., 148, 833-845. https://doi.org/10.1016/j.conbuildmat.2017.05.093   DOI
9 Zhang, C., Liu, J., Han, S. and Hua, Y. (2021), "Pore pressure and spalling in fire-exposed high-strength selfconsolidating concrete reinforced with hybrid fibres", Eur. J. Env. Civ. Eng., 25(2), 337-367. https://doi.org/10.1080/19648189.2018.1530142   DOI
10 Zhou, Y., Xiao, Y., Gu, A. and Lu, Z. (2018), "Dispersion, workability and mechanical properties of different steel-microfiber-reinforced concretes with low fiber content", Sustainability, 10(7), 2335. https://doi.org/10.3390/su10072335   DOI
11 Adnan, H.M. and Dawood, A.O. (2020), "Strength behavior of reinforced concrete beam using re-cycle of PET wastes as synthetic fibers", Case Studies Constr. Mater., 13, e00367. https://doi.org/10.1016/j.cscm.2020.e00367   DOI
12 Alwesabi, E.A.H., Abu Bakar, B.H., Alshaikh, I.M.H. and Akil, H.M. (2020), "Experimental investigation on mechanical properties of plain and rubberised concretes with steel-polypropylene hybrid fibre", Constr. Build. Mater., 233, 117194. https://doi.org/10.1016/j.conbuildmat.2019.117194   DOI
13 Alwesabi, E.A.H., Abu Bakar, B.H., Alshaikh, I.M.H., Zeyad, A.M., Altheeb, A. and Alghamdi, H. (2021), "Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber", Structures, 33, 4421-4432. https://doi.org/10.1016/j.istruc.2021.07.011   DOI
14 Belferrag, A., Kriker, A. and Khenfer. M.E. (2013), "Improvement of the compressive strength of mortar in the arid climates by valorization of dune sand and pneumatic waste metal fibers", Constr. Build. Mater., 40, 847-853. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.079   DOI
15 Bendjillali, K., Chemrouk, M. and Boulekbache, B. (2019), "Performances of cementitious mortars containing recycled synthetic fibres under hot-dry climate", Eur. J. Env. Civ. Eng., 23(10), 1235-1247. https://www.tandfonline.com/doi/full/10.1080/19648189.2017.1344152   DOI
16 Caggiano, A., Pepe, M., Xargay, H. and Martinelli, E. (2020), "Analytical modeling of the postcracking response observed in hybrid steel/polypropylene fiber-reinforced concrete", Polymers, 12(9), 1864. https://doi.org/10.3390/polym12091864   DOI
17 Bertelsen, I.M.G., Ottosen, L.M. and Fischer, G. (2019), "Quantitative analysis of the influence of synthetic fibres on plastic shrinkage cracking using digital image correlation", Constr. Build. Mater., 199, 124-137. https://doi.org/10.1016/j.conbuildmat.2018.11.268   DOI
18 Borg, R.P., Baldacchino, O. and Ferrara, L. (2016), "Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete", Constr. Build. Mater., 108, 29-47. https://doi.org/10.1016/j.conbuildmat.2016.01.029   DOI
19 Caggiano, A., Gambarelli, S., Martinelli, E., Nistico, N. and Pepe, M. (2016), "Experimental characterization of the post-cracking response in hybrid steel/polypropylene fiber-reinforced concrete", Constr. Build. Mater., 125, 1035-1043. https://doi.org/10.1016/j.conbuildmat.2016.08.068   DOI
20 Dawood, E.T. and Ramli, M. (2011), "High strength characteristics of cement mortar reinforced with hybrid fibres", Constr. Build. Mater, 25, 2240-2247. https://doi.org/10.1016/j.conbuildmat.2010.11.008   DOI
21 Seshaiah, B., Srinivasa Rao, P. and Subba Rao, P. (2021), "Effect of mineral admixtures on the properties of steel fibre reinforced SCC proportioned using plastic viscosity and development of regression & ANN model", Comput. Concr., Int. J., 27(6), 523-535. http://dx.doi.org/10.12989/cac.2021.27.6.523   DOI
22 Akkaya, Y., Shah, S.P. and Ankenman, B. (2001), "Effect of fiber dispersion on multiple cracking of cement composites", J. Eng. Mech., 127(4), 311-316. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(311)   DOI
23 Alamshahi, V., Taeb, A., Ghaffarzadeh, R. and Rezaee, M.A. (2012), "Effect of composition and length of PP and polyseter fibres on mechanical properties of cement based composites", Constr. Build. Mater., 36, 534-537. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.005   DOI
24 Alaskar, A., Alabduljabbar, H., Mustafa Mohamed, A., Alrshoudi, F. and Alyousef, R. (2021), "Abrasion and skid resistance of concrete containing waste polypropylene fibers and palm oil fuel ash as pavement material", Constr. Build. Mater., 282, 122681. https://doi.org/10.1016/j.conbuildmat.2021.122681   DOI
25 Ramadoss, P. and Ngamani, K. (2008), "Tensile strength and durability characteristics of high-performance fiber reinforced concrete", Arab. J. Sci. Eng., 33(2B), 307-319. https://inis.iaea.org/search/search.aspx?orig_q=RN:41045167   DOI
26 Ramesh, B., Eswari, S. and Sundararajan, T. (2020), "Flexural behaviour of glass fibre reinforced polymer (GFRP) laminated hybrid-fibre reinforced concrete beams", SN Appl. Sci., 2(204). https://doi.org/10.1007/s42452-020-1966-2   DOI
27 Sun, Z. and Xu, Q. (2009), "Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete", Mater. Sci. Eng. A., 527, 198-204. https://doi.org/10.1016/j.msea.2009.07.056   DOI
28 Banthia, N. and Gupta, R. (2006), "Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete", Cem. Concr. Res., 36(7), 1263-1267. https://doi.org/10.1016/j.cemconres.2006.01.010   DOI
29 Bin, C., Ansheng, W. and Feng, F. (2020), "Bond behavior of PP fiber-reinforced cinder concrete after fire exposure", Comput. Concr., Int. J., 26(2), 115-125. https://doi.org/10.12989/cac.2020.26.2.115   DOI
30 Standards EN 196-1, (2005), Methods of Testing Cement-Part 1: Determination of Strength, BSI London, UK.
31 Vandewalle, L. (2006), Hybrid Fiber Reinforced Concrete, In: KONSTA-GDOUTOS M.S. (eds) Measuring, Monitoring and Modeling Concrete Properties, Springer, Dordrecht, 77-82. https://doi.org/10.1007/978-1-4020-5104-3_9   DOI
32 Yap, S.P., Alengaram, U.J. and Jumaat, M.Z. (2013), "Enhancement of mechanical properties in polypropylene and nylon fibre", Mater. Desig., 49, 1034-1041. https://doi.org/10.1016/j.matdes.2013.02.070   DOI
33 Mohajerani, A., Hui, S.Q., Mirzababaei, M., Arulrajah, A., Horpibulsuk, S., Kadir, A.A., Rahman, M. and Maghool, F. (2019), "Amazing types, properties, and applications of fibres in construction materials", Materials, 12(16), 2513. https://doi.org/10.3390/ma12162513   DOI
34 Islam, G.M.S. and Gupta, S.G. (2016), "Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete", Inter. J. Sust. Built. Env., 5(2), 345-354. https://doi.org/10.1016/j.ijsbe.2016.05.007   DOI
35 Shaaban, I.G., Said, M., Khan, S.U., Eissa, M. and Elrashidy, K. (2021), "Experimental and theoretical behaviour of reinforced concrete beams containing hybrid fibres", Structures, 32, 2143-2160. https://doi.org/10.1016/j.istruc.2021.04.021   DOI
36 Shaikh, F.U.A. and Taweel, M. (2015), "Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures", Adv. Concr. Constr., Int. J., 3(4), 283-293. http://dx.doi.org/10.12989/acc.2015.3.4.283   DOI
37 Langlois, V., Fiorio, B., Beaucour, A.L., Cabrillac, R. and Gouvenot, D. (2007), "Experimental study of the mechanical behavior of continuous glass and carbon yarn-reinforced mortars", Constr. Build. Mater., 21(1), 198-210. https://doi.org/10.1016/j.conbuildmat.2005.06.048   DOI
38 Madhumitha, G. and Kumar, B.N. (2020), "Performance studies on self compacted geo-polymer hybrid fiber reinforced concrete", In: Pancharathi R., Sangoju B., Chaudhary S. (eds), Adv. Sust. Constr. Mater, Lecture Notes in Civil Engineering, Springer, Singapore, 68, 21-32.
39 Mamlouk, M.S. and Zaniewski, J.P. (2011), Materials for Civil and Construction Engineers, (3rd Edition), Upper Saddle River: Prentice Hall.
40 Marthong, C. (2019), "Effect of waste cement bag fibers on the mechanical strength of concrete", Adv. Mater. Re.s, 8(2), 103-115. http://dx.doi.org/10.12989/amr.2019.8.2.103   DOI
41 Sivakumar, A. and Santhanam, M. (2007), "A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete", Cem. Concr. Compos., 29(7), 575-581. https://doi.org/10.1016/j.cemconcomp.2007.03.005   DOI
42 Smarzewski, P. (2019), "Analysis of failure mechanics in hybrid fibre-reinforced high-performance concrete deep beams with and without openings", Materials, 12(1), 101. https://doi.org/10.3390/ma12010101   DOI
43 Eidan, J., Rasoolan, I., Poorveis, D. and Rezaeian, A. (2021), "Effect of polypropylene short fibers on energy absorption capacity and durability of concrete", J. Tes. Eval., 49(5), 3885-3898. https://doi.org/10.1520/JTE20190778   DOI
44 Karthik, M.P. and Maruthachalam, D. (2015), "Experimental study on shear behaviour of hybrid fibre reinforced concrete beams", KSCE. J. Civ. Eng., 19(1), 259-264. https://doi.org/10.1007/s12205-013-2350-1   DOI
45 Shi, F., Pham, T.M., Hao, H. and Hao, Y. (2020), "Post-cracking behaviour of basalt and macro polypropylene hybrid fibre reinforced concrete with different compressive strengths", Constr. Build. Mater., 262, 120108. https://doi.org/10.1016/j.conbuildmat.2020.120108   DOI
46 Silva, E.R., Coelho, J.F. J. and Bordado, J.C. (2013), "Strength improvement of mortar composites reinforced with newly hybrid-blended fibres: Influence of fibres geometry and morphology", Constr. Build. Mater., 40, 473-480. https://doi.org/10.1016/j.conbuildmat.2012.11.017   DOI
47 Soylev, T.A. and Ozturan, T. (2014), "Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction", Constr. Build. Mater., 73, 67-75. https://doi.org/10.1016/j.conbuildmat.2014.09.058   DOI
48 Blazy, J. and Blazy, R. (2021), "Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces", Case Studies Constr. Mater., 14, e00549. https://doi.org/10.1016/j.cscm.2021.e00549   DOI
49 Branch, J., Rawling, A., Hannant, D.J. and Mulheron, M. (2002), "The effect of fibers on the plastic shrinkage cracking of high strength concrete", Mater. Struct., 35(3), 189-194. https://doi.org/10.1007/BF02533588   DOI
50 Corinaldesi, V., Nardinocchi, A. and Donnini, J. (2016), "Study of physical and elasto-mechanical behaviour of fiber-reinforced concrete made of cement containing biomass ash", Eur. J. Env. Civ. Eng., 20(S1), s152-s168. https://doi.org/10.1080/19648189.2016.1246696   DOI
51 Ozyurt, N., Mason, T.O. and Shah, S.P. (2007), "Correlation of fiber dispersion, rheology and mechanical performance of FRCs", Cem. Concr. Compos., 29(2), 70-79. https://doi.org/10.1016/j.cemconcomp.2006.08.006   DOI
52 Koksal, F., Yildirim, M.S., Benli, A. and Gencel, O. (2021), "Hybrid effect of micro-steel and basalt fibers on physico-mechanical properties and durability of mortars with silica fume", Case Studies Constr. Mater., 15, e00649. https://doi.org/10.1016/j.cscm.2021.e00649   DOI
53 Krumins, J. and Zesers, A. (2015), "Experimental investigation of the fracture of hybrid-fiber-reinforced concrete", Mech. Compos. Mater., 51(1), 25-32. https://doi.org/10.1007/s11029-015-9473-z.   DOI
54 Mallinadh, A.K., Sekhar Rao, T.C. and Ramana Rao, N.V. (2020), "Strength and behavior of hybrid fiberreinforced geopolymer concrete columns under uniaxial compression", Adv. Sust. Constr. Mater., In: Pancharathi R., Sangoju B., Chaudhary S. (eds), Lecture Notes in Civil Engineering, Springer, Singapore, 68, 3-19.
55 Naraganti, S.R., Pannem, R.M.R. and Putta, J. (2019), "Impact resistance of hybrid fibre reinforced concrete containing sisal fibres", Ain Shams Eng. J., 10(2), 297-305. https://doi.org/10.1016/j.asej.2018.12.004   DOI
56 Nuaklong, P., Chittanurak, J., Jongvivatsakul, P., Pansuk, W., Lenwari, A. and Likitlersuang, S. (2020), "Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC", Adv. Concr. Constr., Int. J., 10(1), 1-11. https://doi.org/10.12989/acc.2020.10.1.001   DOI
57 Pereira de Oliveira, L.A. and Castro-Gomes, J.P. (2011), "Physical and mechanical behaviour of recycled PET fibre reinforced mortar", Constr. Build. Mater., 25(4), 1712-1717. https://doi.org/10.1016/j.conbuildmat.2010.11.044   DOI