• Title/Summary/Keyword: risk modelling

Search Result 98, Processing Time 0.029 seconds

Robustness Design For Tall Timber Buildings

  • Voulpiotis, Konstantinos;Frangi, Andrea
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.245-253
    • /
    • 2020
  • With the ever-increasing height of timber buildings, the complexity of timber as a structural material gives rise to behaviors not previously studied by engineers. An urgent call is needed regarding their performance in damage scenarios: activating alternative load paths in tall timber buildings is not the same as in tall buildings made with steel and concrete. In this paper we propose a robustness framework covering all building materials, whose application in timber may lead to new conceptual designs for the next generation of tall timber buildings. Qualitatively, the importance of building scale and the distinction between localized and systematic exposures are discussed, and how existing supertall structures can be an example for future generations of tall timber buildings. Quantitatively, the robustness index is introduced alongside a method to calculate the performance of a given building regarding robustness, in order to find the most cost-effective structural solutions for improved robustness. A three-level application recommendation is made, depending on the importance of the building in question. Primarily, the paper highlights the importance of conceptual design to achieve structural robustness and encourages the practicing engineering community to use the proposed framework to quantitatively come up with the new generation of tall timber buildings.

3D GSIS Application for Managing Flood Disaster (홍수재해관리를 위한 3차원 GSIS적용)

  • Yoo, Hwan-Hee;Kim, Uk-Nam;Kim, Seong-Sam;Chung, Dong-Ki
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.1 s.28
    • /
    • pp.21-29
    • /
    • 2004
  • Floods are disastrous natural phenomena which result in numerous losses of life and property. It is possible to minimize the potential risk by adopting a disaster management system. Nowadays, Geo-Spatial Information System(GSIS) and computer-modelling techniques have assisted scientists and engineers with determining flood disaster assessments, GIS technologies especially have the advantage of performing spatial analysis as well as generating the model for a flood hazard. Therefore, this paper presents the flood management system based on 3D GSIS that can cope with natural disasters actively and manage flood hazard systematically by constructing the database using hydrological data, digital map, DEM, and high-resolution satellite images.

  • PDF

A Study on the Modeling of Ship Energy System Using Bond Graph (Bond Graph를 이용한 선박 에너지 시스템 모델링 연구)

  • Sang-Won Moon;Won-Sun Ruy
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.19-28
    • /
    • 2024
  • Environmental regulations are becoming more stringent in response to climate change, especially concerning marine pollution caused by ship emissions. Large ships are adjusting by integrating technologies to reduce pollutant emissions and transitioning to eco-friendly fuels such as low-sulfur oil and LNG. However, small ships face space constraints for installing LNG propulsion systems and the risk of power depletion with pure electric propulsion. Consequently, there's growing interest in researching hybrid propulsion methods that combine electricity and diesel for smaller vessels. Hybrid propulsion systems utilize diverse energy sources, requiring an effective method for evaluating their efficiency. This study proposes employing Bond graph modeling to comprehensively analyze energy dynamics within hybrid propulsion systems, facilitating better understanding and optimization of their efficiency. Modeling of the ship's energy system using Bond graphs will be able to provide a framework for integrating various energy sources and evaluating their effects.

Modelling Pasture-based Automatic Milking System Herds: System Fitness of Grazeable Home-grown Forages, Land Areas and Walking Distances

  • Islam, M.R.;Garcia, S.C.;Clark, C.E.F.;Kerrisk, K.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.903-910
    • /
    • 2015
  • To maintain a predominantly pasture-based system, the large herd milked by automatic milking rotary would be required to walk significant distances. Walking distances of greater than 1-km are associated with an increased incidence of undesirably long milking intervals and reduced milk yield. Complementary forages can be incorporated into pasture-based systems to lift total home grown feed in a given area, thus potentially 'concentrating' feed closer to the dairy. The aim of this modelling study was to investigate the total land area required and associated walking distance for large automatic milking system (AMS) herds when incorporating complementary forage rotations (CFR) into the system. Thirty-six scenarios consisting of 3 AMS herds (400, 600, 800 cows), 2 levels of pasture utilisation (current AMS utilisation of 15.0 t dry matter [DM]/ha, termed as moderate; optimum pasture utilisation of 19.7 t DM/ha, termed as high) and 6 rates of replacement of each of these pastures by grazeable CFR (0%, 10%, 20%, 30%, 40%, 50%) were investigated. Results showed that AMS cows were required to walk greater than 1-km when the farm area was greater than 86 ha. Insufficient pasture could be produced within a 1 km distance (i.e. 86 ha land) with home-grown feed (HGF) providing 43%, 29%, and 22% of the metabolisable energy (ME) required by 400, 600, and 800 cows, respectively from pastures. Introduction of pasture (moderate): CFR in AMS at a ratio of 80:20 can feed a 400 cow AMS herd, and can supply 42% and 31% of the ME requirements for 600 and 800 cows, respectively with pasture (moderate): CFR at 50:50 levels. In contrast to moderate pasture, 400 cows can be managed on high pasture utilisation (provided 57% of the total ME requirements). However, similar to the scenarios conducted with moderate pasture, there was insufficient feed produced within 1-km distance of the dairy for 600 or 800 cows. An 800 cow herd required 140 and 130 ha on moderate and high pasture-based AMS system, respectively with the introduction of pasture: CFR at a ratio of 50:50. Given the impact of increasing land area past 86 ha on walking distance, cow numbers could be increased by purchasing feed from off the milking platform and/or using the land outside 1-km distance for conserved feed. However, this warrants further investigations into risk analyses of different management options including development of an innovative system to manage large herds in an AMS farming system.

Modelling protection behaviour towards micronutrient deficiencies: Case of iodine biofortified vegetable legumes as health intervention for school-going children

  • Mogendi, Joseph Birundu;De Steur, Hans;Gellynck, Xavier;Makokha, Anselimo
    • Nutrition Research and Practice
    • /
    • v.10 no.1
    • /
    • pp.56-66
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Despite successes recorded in combating iodine deficiency, more than 2 billion people are still at risk of iodine deficiency disorders. Rural landlocked and mountainous areas of developing countries are the hardest hit, hence the need to explore and advance novel strategies such as biofortification. SUBJECTS/METHODS: We evaluated adoption, purchase, and consumption of iodine biofortified vegetable legumes (IBVL) using the theory of protection motivations (PMT) integrated with an economic valuation technique. A total of 1,200 participants from three land-locked locations in East Africa were recruited via multi-stage cluster sampling, and data were collected using two, slightly distinct, questionnaires incorporating PMT constructs. The survey also elicited preferences for iodine biofortified foods when offered at a premium or discount. Determinants of protection motivations and preferences for iodine biofortified foods were assessed using path analysis modelling and two-limit Tobit regression, respectively. RESULTS: Knowledge of iodine, iodine-health link, salt iodization, and biofortification was very low, albeit lower at the household level. Iodine and biofortification were not recognized as nutrient and novel approaches, respectively. On the other hand, severity, fear, occupation, knowledge, iodine status, household composition, and self-efficacy predicted the intention to consume biofortified foods at the household level; only vulnerability, self-efficacy, and location were the most crucial elements at the school level. In addition, results demonstrated a positive willingness-to-pay a premium or acceptance of a lesser discount for biofortification. Furthermore, preference towards iodine biofortified foods was a function of protection motivations, severity, vulnerability, fear, response efficacy, response cost, knowledge, iodine status, gender, age. and household head. CONCLUSIONS: Results lend support for prevention of iodine deficiency in unprotected populations through biofortification; however 'threat' appraisal and socio-economic predictors are decisive in designing nutrition interventions and stimulating uptake of biofortification. In principle, the contribution is threefold: 1) Successful application of the integrated model to guide policy formulation; 2) Offer guidance to stakeholders to identify and tap niche markets; 3) stimulation of rural economic growth around school feeding programmes.

Tree species migration to north and expansion in their habitat under future climate: an analysis of eight tree species Khyber Pakhtunkhwa, Pakistan

  • Muhammad Abdullah Durrani;Rohma Raza;Muhammad Shakil;Shakeel Sabir;Muhammad Danish
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.96-109
    • /
    • 2024
  • Background: Khyber Pakhtunkhwa government initiated the Billion Tree Tsunami Afforestation Project including regeneration and afforestation approaches. An effort was made to assess the distribution characteristics of afforested species under present and future climatic scenarios using ecological niche modelling. For sustainable forest management, landscape ecology can play a significant role. A significant change in the potential distribution of tree species is expected globally with changing climate. Ecological niche modeling provides the valuable information about the current and future distribution of species that can play crucial role in deciding the potential sites for afforestation which can be used by government institutes for afforestation programs. In this context, the potential distribution of 8 tree species, Cedrus deodara, Dalbergia sissoo, Juglans regia, Pinus wallichiana, Eucalyptus camaldulensis, Senegalia modesta, Populus ciliata, and Vachellia nilotica was modeled. Results: Maxent species distribution model was used to predict current and future distribution of tree species using bioclimatic variables along with soil type and elevation. Future climate scenarios, shared socio-economic pathways (SSP)2-4.5 and SSP5-8.5 were considered for the years 2041-2060 and 2081-2100. The model predicted high risk of decreasing potential distribution under SSP2-4.5 and SSP5-8.5 climate change scenarios for years 2041-2060 and 2081-2100, respectively. Recent afforestation conservation sites of these 8 tree species do not fall within their predicted potential habitat for SSP2-4.5 and SSP5-8.5 climate scenarios. Conclusions: Each tree species responded independently in terms of its potential habitat to future climatic conditions. Cedrus deodara and P. ciliata are predicted to migrate to higher altitude towards north in present and future climate scenarios. Habitat of D. sissoo, P. wallichiana, J. regia, and V. nilotica is practiced to be declined in future climate scenarios. Eucalyptus camaldulensis is expected to be expanded its suitability area in future with eastward shift. Senegalia modesta habitat increased in the middle of the century but decreased afterwards in later half of the century. The changing and shifting forests create challenges for sustainable landscapes. Therefore, the study is an attempt to provide management tools for monitoring the climate change-driven shifting of forest landscapes.

Establishment and Standardization of Evaluation Procedure for Urban Flooding Analysis Model Using Available Inundation Data (가용 침수 자료를 활용한 도심지 침수 해석 모형의 평가 절차 수립 및 표준화)

  • Shin, Eun Taek;Jang, Dong Min;Park, Sung Won;Eum, Tae Soo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.100-110
    • /
    • 2020
  • Recently, the frequency of typhoon and torrential rain due to climate change is increasing. In addition, the upsurge in the complexity of urban sewer network and impervious surfaces area aggravates the inland flooding damage. In response to these worsening situations, the central and local governments are conducting R&D tasks related to predict and mitigate the flood risk. Researches on the analysis of inundation in urban areas have been implemented through various ways, and the common features were to evaluate the accuracy and justification of the model by comparing the model results with the actual inundation data. However, the evaluation procesure using available urban flooding data are not consistent, and if there are no quantitative urban inundation data, verification has to be performed by using press releases, public complaints, or photos of inundation occurring through 'CCTV'. Because theses materials are not quantitative, there is a problem of low reliability. Therefore, this study intends to develop a comparative analysis procedure on the quantitative degree and applicability of the verifiable inundation data, and a systematic framework for the performance assessment of urban flood analysis model was proposed. This would contribute to the standardization of the evaluation and verification procedure for urban flooding modelling.

A 6 m cube in an atmospheric boundary layer flow -Part 2. Computational solutions

  • Richards, P.J.;Quinn, A.D.;Parker, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.177-192
    • /
    • 2002
  • Computation solutions for the flow around a cube, which were generated as part of the Computational Wind Engineering 2000 Conference Competition, are compared with full-scale measurements. The three solutions shown all use the RANS approach to predict mean flow fields. The major differences appear to be related to the use of the standard $k-{\varepsilon}$, the MMK $k-{\varepsilon}$ and the RNG $k-{\varepsilon}$ turbulence models. The inlet conditions chosen by the three modellers illustrate one of the dilemmas faced in computational wind engineering. While all modeller matched the inlet velocity profile to the full-scale profile, only one of the modellers chose to match the full-scale turbulence data. This approach led to a boundary layer that was not in equilibrium. The approach taken by the other modeller was to specify lower inlet turbulent kinetic energy level, which are more consistent with the turbulence models chosen and lead to a homogeneous boundary layer. For the $0^{\circ}$ case, wind normal to one face of the cube, it is shown that the RNG solution is closest to the full-scale data. This result appears to be associated with the RNG solution showing the correct flow separation and reattachment on the roof. The other solutions show either excessive separation (MMK) or no separation at all (K-E). For the $45^{\circ}$ case the three solutions are fairly similar. None of them correctly predicting the high suctions along the windward edges of the roof. In general the velocity components are more accurately predicted than the pressures. However in all cases the turbulence levels are poorly matched, with all of the solutions failing to match the high turbulence levels measured around the edges of separated flows. Although all of the computational solutions have deficiencies, the variability of results is shown to be similar to that which has been obtained with a similar comparative wind tunnel study. This suggests that the computational solutions are only slightly less reliable than the wind tunnel.

Investigation of health and safety impact from the 'Site BIM' tools in the live construction sites

  • Shah, Raj;Edwards, Joel
    • Journal of Construction Engineering and Project Management
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Construction in the UK is the second most dangerous industry in terms of fatal and minor injuries according to the 2014 report of HSE. The use of mobile devices such as iPad, Tablets and Smart phones on the live construction projects is also on the increase in the UK due to the 2016 - Level 2 BIM (Building Information Modelling) implementation target, set by the UK Government. Hence, the use of such devices may become a distraction from work activities on the construction sites and will cause a major risk to the end users. The subject of improving safety of BIM use is widely researched, but there is a gap in knowledge about the actual use of the mobile devices and perception of 'Site BIM', on the construction site activities. The main gap identified in the 'Site BIM' is the health and safety aspect of using such devices on the construction sites. A safer way of working with such devices needs to be identified to avoid any potential site hazards and fatalities before the widespread use of the devices are found on the construction projects. In that context, the paper is aimed to highlight the safety issues that are required to address for the successful implementation of the mobile devices for safer use of the 'Site BIM'. Questionnaire survey was used to collect the site information among construction professionals in the UK. The survey findings suggested that a proactive approach may be helpful to stop potential hazards and risks causing by the use of mobile devices and potential measures need to be identified before any injuries and incidents occur. The paper concludes that training, changing size of mobile devices and ensuring a separate induction training for 'Site BIM' tools will improve the health and safety of the end users of the mobile devices at the live construction sites.

Simulation of Ultrasonic Stress During Impact Phase in Wire Bonding

  • Mayer, Michael
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.7-11
    • /
    • 2013
  • As thermosonic ball bonding is developed for more and more advanced applications in the electronic packaging industry, the control of process stresses induced on the integrated circuits becomes more important. If Cu bonding wire is used instead of Au wire, larger ultrasonic levels are common during bonding. For advanced microchips the use of Cu based wire is risky because the ultrasonic stresses can cause chip damage. This risk needs to be managed by e.g. the use of ultrasound during the impact stage of the ball on the pad ("pre-bleed") as it can reduce the strain hardening effect, which leads to a softer deformed ball that can be bonded with less ultrasound. To find the best profiles of ultrasound during impact, a numerical model is reported for ultrasonic bonding with capillary dynamics combined with a geometrical model describing ball deformation based on volume conservation and stress balance. This leads to an efficient procedure of ball bond modelling bypassing plasticity and contact pairs. The ultrasonic force and average stress at the bond zone are extracted from the numerical experiments for a $50{\mu}m$ diameter free air ball deformed by a capillary with a hole diameter of $35{\mu}m$ at the tip, a chamfer diameter of $51{\mu}m$, a chamfer angle of $90^{\circ}$, and a face angle of $1^{\circ}$. An upper limit of the ultrasonic amplitude during impact is derived below which the ultrasonic shear stress at the interface is not higher than 120 MPa, which can be recommended for low stress bonding.