• Title/Summary/Keyword: ring sensor

Search Result 212, Processing Time 0.028 seconds

Ring Array of Structured Light Image Based Ranging Sensor and Autonomous Navigation for Mobile Robot (이동로봇을 위한 링 배열 구조광 영상 기반 거리측정 센서 및 자율주행)

  • Shin, Jin;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.571-578
    • /
    • 2012
  • In the paper, we proposed a ring type structured light image based embedded ranging sensor for a mobile robot. Since the proposed ranging sensor obtains omnidirectional object distance, it is useful for autonomous navigation of a mobile robot. By matching the local omnidirectional distance map with a given global object map, it is possible to get position and heading angle of mobile robot in the global coordinates. Experiments for matching and navigation were carried out to verify the performance of the proposed ranging sensor.

CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control (링 오실레이터를 가진 CMOS 온도 센서)

  • Kim, Chan-kyung;Lee, Jae-Goo;Kong, Bai-Sun;Jun, Young-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.485-486
    • /
    • 2006
  • This paper proposes a novel low-cost CMOS temperature sensor for controlling the self-refresh period of a mobile DRAM. In this temperature sensor, ring oscillators composed of cascaded inverter stages are used to obtain the temperature of the chip. This method is highly area-efficient, simple and easy for IC implementation as compared to traditional temperature sensors based on analog bandgap reference circuits. The proposed CMOS temperature sensor was fabricated with 80 nm 3-metal DRAM process. It occupies a silicon area of only about less than $0.02\;mm^2$ at $10^{\circ}C$ resolution with under 5uW power consumption at 1 sample/s processing rate. This area is about 33% of conventional temperature sensor in mobile DRAM.

  • PDF

Development of a Ring-type Wearable Healthcare Device (반지 형태의 웨어러블 헬스케어 디바이스 개발)

  • Baek, Hyun Jae;Cho, Jaegeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.892-897
    • /
    • 2018
  • Due to population aging, an increase in the number of patients with chronic illnesses, and an increase in the number of single-person households, monitoring of health status in everyday life without the need for a hospital has become very important. For this reason, researches on various health care devices have been attempted, among which wearable devices are attracting much attention. In this paper, we propose a new ring-type wearable device for next generation healthcare. On the inner side of the ring, a metal electrodes for GSR measurement and an optical sensor for measurement of pulse wave signals of two wavelengths of red and near-infrared light were mounted. In addition, it was equipped with an acceleration sensor, and information about the degree of motion could be obtained. In this paper, it is shown that a health monitoring device can be implemented in the form of a ring, and the measured signals can be used to calculate heart rate, oxygen saturation, sleep time and sleep efficiency. Through the advanced algorithm, it is expected that we can extract various health information, especially sleep related health information by using the ring device, and it is also expected that it can contribute to the implementation of wearable healthcare effectively.

Positional Uncertainty Reduction of Overlapped Ultrasonic Sensor Ring for Efficient Mobile Robot Obstacle Detection (효율적인 이동로봇의 장애물 탐지를 위한 중첩 초음파 센서 링의 위치 불확실성 감소)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.198-206
    • /
    • 2009
  • This paper presents the reduction of the positional uncertainty of an ultrasonic sensor ring with overlapped beam pattern for the efficient obstacle detection of a mobile robot. Basically, it is assumed that a relatively small number of inexpensive low directivity ultrasonic sensors are installed at regular spacings along the side of a circular mobile robot with their beams overlapped. First, for both single and double obstacles, we show that the positional uncertainty inherent to an ultrasonic sensor can be reduced using the overlapped beam pattern, and also quantify the relative improvement in positional uncertainty. Second, given measured distance data from one or two ultrasonic sensors, we devise the geometric method to determine the position of an obstacle with respect to the center of a mobile robot. Third, we examine and compare existing ultrasonic sensor models, including Gaussian distribution, parabolic distribution, uniform distribution, and impulse, and then build the sensor model of overlapped ultrasonic sensors, adequate for obstacle detection in terms of positional uncertainty and computational requirement. Finally, through experiments using our prototype ultrasonic sensor ring, the validity of overlapped beam pattern for reduced positional uncertainty and efficient obstacle detection is demonstrated.

  • PDF

A Development of Measurement System for Diathesis-Diagnosis (체질 진단을 위한 센서 시스템의 개발)

  • Jung, Yong-Rae;Kim, Seong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.260-263
    • /
    • 2001
  • This paper is to develop the sensing system for opening-force measurement such as O-Ring muscular meridian. We designed to overcome the functional limit that the conventional force-sensor can measure just the closing-force. Therefore, the new sensor can meet a variety of application as well as O-Ring test. The structure of the new sensor is an actuator-type system using an electromagnet. That is made up of mechanical system, electromagnet, current transformer and computer interface circuit. Driving software and user interface program of the new sensor system also is explained in this paper.

  • PDF

Acoustic Sensitivity Analysis of a Ring-type Probe Based on a Fiber-optic Sagnac Interferometric Sensor (광섬유 사냑 간섭형 센서에 기반한 링형 탐촉자의 수중 음향 민감도 해석)

  • Lee, Yeon-Woo;Kwon, Hyu-Sang;Kwon, Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • To measure underwater acoustics using a fiber-optic Sagnac interferometric sensor, the sensitivities of ring-type probes are investigated by theoretical and experimental studies. A ring-type probe was fabricated by packaging a single-mode fiber wound around an acrylate cylinder of diameter 5 cm with epoxy bond. The probes were prepared as A-type, which was packaged with 46.84 m of sensing optical fiber, and B-type, which was packaged with 112.22 m of sensing fiber. The underwater acoustic test was performed at frequencies of 50, 70, and 90 kHz, and over a range of acoustic pressure of 20-100 Pa, to study the sensitivity. A commercial acoustic generator was located 1 m from the acoustic sensor, such as the ring-type probe or a commercial acoustic sensor. From the experimental test, the acoustic sensitivity of the ring-type probe had different values due to acoustic frequencies, unlike the theoretical prediction. Therefore, the experimental sensitivities were averaged for comparison to the theoretical values. These averaged sensitivities are 25.48 × 10-5 rad/Pa for the A-type probe and 60.79 × 10-5 rad/Pa for the B-type probe. The correction coefficient of Young's modulus c was determined to be 0.35.

Ring-Shaped Inductive Sensor Design and Application to Pressure Sensing (환형 인덕티브 센서의 설계 및 압력센서로의 적용)

  • Noh, Myounggyu;Kim, Sunyoung;Baek, Seongki;Park, Young-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.995-999
    • /
    • 2015
  • Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor.

Development of smart transducer with embedded sensor for automatic process control of ultrasonic wire bonding

  • Or, Siu Wing;Chan, Helen Lai Wa;Liu, Peter Chou Kee
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.47-61
    • /
    • 2005
  • A ring-shaped lead zirconate titanate (PZT) piezoceramic sensor has been integrated with the Langevin-type piezoceramic driver of an ultrasonic wire-bonding transducer to form a smart transducer for in-situ measurement of three essential bonding parameters: namely, impact force, ultrasonic amplitude and bond time. This sensor has an inner diameter, an outer diameter and a thickness of 12.7 mm, 5.1 mm and 0.6 mm, respectively. It has a specifically designed electrode pattern on the two major surfaces perpendicular to its thickness along which polarization is induced. The process-test results have indicated that the sensor not only is sensitive to excessive impact forces exerted on the devices to be bonded but also can track changes in the ultrasonic amplitude proficiently during bonding. Good correlation between the sensor outputs and the bond quality has been established. This smart transducer has good potential to be used in automatic process-control systems for ultrasonic wire bonding.

Study of ARS using Ring Laser Gyro (Ring Laser Gyro를 이용한 ARS에 관한 연구)

  • Jeong, Sang-Ki;Choi, Hyeung-Sik;Ji, Dae-Hyeong;Jung, Dong-Wook;Kwon, O-Soon;Shin, Chang-Joo;Seo, Jung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.164-169
    • /
    • 2017
  • Studies were performed on an ARS using SDINS's RLG and the geomatic sensor. To develop the ARS, experiments were performed to determine the characteristics of the RLG and geomatic sensor. Based on the results, to reduce the angular position errors of the RLG, which accumulate from the angular velocity data, an algorithm was studied that uses the Extended Kalman filter (EKF) to compensate the RLG data and geomatic sensor data. To verify the performance of the developed algorithm for reducing the cumulative angular errors, experiments that included the developed EKF were performed. Through these, it was shown that a drastic reduction in the angular errors of the RLG were achieved.

The Effect of the Guard Ring around the Emitter on the Sensitivity of the Highly Sensitive Separated Drift Field Magnetotransistor (에미터 주위의 guard ring이 분리된 전계를 갖는 고감도 자기 트랜지스터의 민감도에 미치는 영향)

  • Kang, Uk-Song;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1413-1415
    • /
    • 1994
  • A novel magnetotransistor using a separated drift field with the guard ring around the emitter has been designed and fabricated. The operating principle of the proposed magnetic field sensor is based on the emitter injection modulation. The $p^+$ guard ring around the n-type emitter confines drifted electrons in the emitter, hence the induced Hall voltage in the emitter is increased. The measured relative sensitivity of the separated drift magnetotransistor with the guard ring is about 100 times larger than that without the guard ring.

  • PDF