• 제목/요약/키워드: rigid-body simulation

검색결과 213건 처리시간 0.02초

충돌 안전도 해석을 위한 $5^{th}$ percentile 성인 여성 유한요소 모델 개발 - Part I 다물체 동력학 모델 개발 (Development of $5^{th}$ percentile female finite Element Model for Crashworthiness Simulation - Part I Articulated Rigid Body Model)

  • 나상진;최형연;이진희
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권4호
    • /
    • pp.277-282
    • /
    • 2004
  • 자동차 충돌 시 신체의 크기가 작은 여성 승객의 거동 및 상해 기구를 조사하기 위하여 5% percentile의 여성 유한 요소 모델을 개발하였다. 본 모델은 작은 신체 여성의 형상을 대표하는 분절된 강체와 해부학적으로 상세하게 묘사된 내부 요소들로 구성되어 진다. 분절된 강체 모델은 상세한 골격 및 장기 등의 플랫폼 역할을 수행하며 또한 작은 여성 승객의 전체적인 운동역학을 표현하기도 한다. 본 논문에서는 분절된 강체 모델의 체형 구성 및 유한요소 구조 등에 대한 자세한 내용이 모델의 검증과 함께 소개되어 진다. 모델링의 후반부 즉 작은 여성의 해부학적으로 상세한 내부 요소는 연이은 part II 논문에서 다루게 된다.

변형체-강체 다물체 해석을 이용한 초중량물 핸들링로봇의 평가 (Estimation on Heavy Handling Robot using Flexible-Rigid Multibody Analysis)

  • 김진광;고해주;박기범;김태규;정윤교
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.46-52
    • /
    • 2010
  • A flexible-rigid multibody analysis was pen armed to examine the dynamic response of a heavy handling robot system under a worst motion scenario. A rigid body dynamics analysis was solved and compared with flexible-rigid multibody analysis. The modal analysis and test were also carried out to establish the accuracy and the validation of the finite element model used in this paper. For the flexible-rigid multibody simulation, stresses in several major bodies were interested, so that those parts are flexible and other parts are modeled as rigid body in order to reduce computer resources.

Dynamic Analysis of a Chain of Rigid Rods

  • Attia, Hazem Ali
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제8권2호
    • /
    • pp.75-86
    • /
    • 2004
  • In this study, a recursive algorithm for generating the equations of motion of a chain of rigid rods is presented. The methods rests upon the idea of replacing the rigid body by a dynamically equivalent constrained system of particles. The concepts of linear and angular momentums are used to generate the rigid body equations of motion without either introducing any rotational coordinates or the corresponding transformation matrices. For open-chain, the equations of motion are generated recursively along the serial chains. For closed-chain, the system is transformed to open-chain by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a closed-chain of rigid rods is chosen to demonstrate the generality and simplicity of the proposed method.

  • PDF

차체의 유연성을 고려한 엔진마운트 최적설계 (Optimum Design of Engine Mount System Considering Body Flexibility)

  • 황인수;김태욱;박우선;고병식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.319-325
    • /
    • 1997
  • As customer's demand for vehicle comfort is getting increased, vibration problem is very important issue in vehicle development. Engine is the main factor causing vehicle vibration, so that we should isolate detrimental transmitted excitation from engine. In order to solve this problem engine mounting system was properly optimized. Simulation was performed not only rigid body mode analysis but also flexible body mode analysis. We obtained the optimal locations and stiffness of engine mounts from simulation results, and had reasonable results from considering flexible body mode than only rigid body mode analysis.

  • PDF

선형 압축기의 동적 거동 예측 Simulation Tool 개발 (Development of Simulation Tool for Dynamic Behavior of a Linear Compressor)

  • 전수홍;정의봉;이효재;김당주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.476-483
    • /
    • 2009
  • A linear compressor used in a refrigerator has higher energy efficiency than a reciprocating compressor, but its vibration level is still severe than others. The vibration level of linear compressor at the frequency of 60Hz is dominant since it is the exciting frequency of a motor. In this paper, a simulation tool to predict the shell vibration of the linear compressor was developed. The shell and body parts in a compressor were assumed to be 3-dimensional rigid body having both translational and rotational motion, while the reciprocating piston part has only 1-dimensional translational motion. The flexible loop-pipe was modeled by in-house code of finite element method. To verify the developed tool, five cases of different loop-pipe shapes were examined experimentally. The results by the developed tool showed good agreements with those by experiments.

인위적 체적력 기법에 의한 후방 가압 및 인장을 고려한 인발공정의 정밀 시뮬레이션 기술 (Precision Simulation of Drawing Processes Considering Back Pressing or Tension with Artificial Body Force Scheme)

  • 엄재근;심상현;조재민;김홍석;전만수
    • 소성∙가공
    • /
    • 제20권6호
    • /
    • pp.461-467
    • /
    • 2011
  • An artificial body force method is presented to accurately simulate drawing processes in which back pressing is exerted. A rigid-plastic finite element method is applied together with a numerical scheme to eliminate the numerically incurred plastic deformation in rigid or elastic region, which significantly influences simulation results because it eventually changes reduction of area in drawing. Back tension or compression is applied by body force at the rear part of material to obtain numerically stable solution. Two typical examples are shown, a drawing process with back tension applied and a tube drawing with a fixed plug and back pressing applied.

물수제비 시뮬레이션을 위한 개선된 동역학 모델 (An Improved Dynamics Model for Stone Skipping Simulation)

  • 이남경;백낙훈
    • 한국멀티미디어학회논문지
    • /
    • 제13권9호
    • /
    • pp.1382-1390
    • /
    • 2010
  • 우리는 일상에서 유체와 강체 사이에서 일어나는 상호작용을 흔히 볼 수 있다. 하지만 이를 시뮬레이션하는 것은 많은 계산량이 필요한 어려운 작업이다. 본 논문에서는 유체와 강체 사이의 상호작용 현상 중 하나인 물수제비 현상을 실시간으로 시뮬레이션 할 수 있는 역학적 모델을 제안한다. 이를 위해 실시간에 계산 가능하면서도 이전 연구에서 고려하지 않았던 돌멩이의 회전운동을 포함하는 개선된 역학적 모델을 사용하며 공기와의 마찰로 생기는 힘들도 포함한 수식을 제안한다. 제안하는 모델을 사용하면 사용자의 다양한 입력에 대해 사실적인 물수제비 현상을 시뮬레이션 할 수 있다. 또한 이전 결과에 비해 보다 원에 가까운 파장을 만들면서 실시간 처리가 가능한 수면 모델도 제시한다. 본 논문에서 제안하는 방법은 상호작용 역학 시스템이나 게임 엔진들에 쉽게 적용할 수 있다.

다물체 동역학 시뮬레이션 기반 4단 배수 타워의 동적 특성 연구 (Study on Dynamic Characteristics of 4-Step Drainage Tower Based on Multi-body Dynamics Simulation)

  • 박승운;한영환;전호영;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.9-16
    • /
    • 2023
  • This paper analyzed a drainage tower used to drain water in flooded areas. Multi-body dynamics simulation was used to analyze the dynamic behavior of the drainage tower. Structural analysis, flexible-body dynamic analysis, and rigid body dynamic analysis were done to study the maximum Von-Mises stress of the drainage tower. The results showed that the maximum Von-Mises stress occurs at the turn table, and it decreases when the angle of the boom is increased. Also, the rate of the change of angle affects the maximum stress so that the maximum stress changes more when the angular velocity of the boom increases. Based on the rigid body dynamic analysis and the theoretical analysis results, the centrifugal force from the angular velocity makes the difference in the maximum stress at the turn table because of the difference in their direction. Consequently, it was concluded that the centrifugal force should be considered when designing construction machinerythat can rotate.

다물체계 동역학을 기반으로 한 와이어로프와 조선용 블록 외판 사이의 간섭 시뮬레이션 (Simulation of Contacts Between Wire Rope and Shell Plate of a Block for Shipbuilding Industry based on Multibody Dynamics)

  • 조아라;구남국;차주환;박광필;이규열
    • 한국CDE학회논문집
    • /
    • 제17권5호
    • /
    • pp.324-332
    • /
    • 2012
  • In this paper, a method for calculating the contact force and the frictional force caused by contacts between the wire rope and the rigid body is introduced based on multibody dynamics. And the method is applied to a simulation of contacts between the wire rope and the shell plate of a block that can occur during shipbuilding. The wire rope is composed of a number of lumped masses and the wire rope segments that connect the masses. After calculating the position of interference, we inserted a contact node into the wire rope. We then derived the equations of motion of the wire rope and the rigid body using augmented formulation based on multibody dynamics taking into account the constraints between the contact node and the rigid body. Using the equations, we were able to obtain the constraint force between the contact node and the rigid body, and calculate the contact force and the frictional force, based on which the position of the contact node was corrected. Finally, we applied our results to perform simulation of contacts between the wire rope and the shell plate of a block in order to verify the efficacy of the method proposed in this paper.

Dynamics in Carom and Three Cushion Billiards

  • Han Inhwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.976-984
    • /
    • 2005
  • This paper presents the analysis results of dynamics in the billiards game within the frame­work of rigid-body mechanics and a numerical simulation program. The friction exists between the ball and the table bed as well as between the ball and the rail. There are three parts in the dynamic behavior of the ball on the table bed; motion of the ball on the table bed, collision between balls, and collision between the ball and the cushion. During the development of the simulation program, the dynamics problems such as rolling motion and three-dimensional frictional impact motion have been analyzed in detail. The theoretical issues are implemented into a viable graphic simulation program and its efficacy is demonstrated through the experi­mental validation of the billiards game. The resulting analysis results are verified quantitatively and qualitatively using high-speed video camera. Through the experimental tests, it was found that the physical parameters such as coefficients of restitution and friction vary according to the motion variables and corresponding empirical formulations were developed. The simulation and experimental results agree well.