• Title/Summary/Keyword: rigid frame

Search Result 339, Processing Time 0.023 seconds

Strategy to increase distortional rigidity of crane box girder: Staggered truss diaphragm

  • Yangzhi Ren;Wenjing Guo;Xuechun Liu;Bin Wang;Piyong Yu;Xiaowen Ji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.461-472
    • /
    • 2023
  • This paper proposes a novel method for increasing the distortional frame rigidity of off-rail box girder bridges for cranes by reinforcing the diaphragm with staggered truss. The study starts by using the Matrix Displacement Method to determine the shear angle of the staggered truss diaphragm under two assumptions: hinge joint and rigid joint. To obtain closed-form solutions for the transversal and longitudinal deformations and warping stress of the crane girder, the study employs the Initial Parameter Method and considers the compatibility of shear deformation at joints between the diaphragms and the girder. The theoretical solutions are validated through finite element analysis, which also confirms that the hinge-joint assumption accurately represents the shear angle of the staggered truss diaphragm in girder distortion. Additionally, the study conducts extensive parameter analyses to examine the impact of staggered truss dimensions on distortional stress and deformation. Furthermore, the study compares the distortional warping stresses of crane girders reinforced with staggered truss diaphragms and those reinforced with perforated ones, emphasizing the importance of incorporating stagger truss in diaphragms. Overall, this paper provides a thorough evaluation of the proposed approach's effectiveness in enhancing the distortional frame rigidity of off-rail box girder bridges for cranes. The findings offer valuable insights into the design and reinforcement of diaphragms using staggered truss to enhance the structural performance of crane girders.

Design of a morphing actuated aileron with chiral composite internal structure

  • Airoldi, Alessandro;Quaranta, Giuseppe;Beltramin, Alvise;Sala, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.331-351
    • /
    • 2014
  • The paper presents the development of numerical models referred to a morphing actuated aileron. The structural solution adopted consists of an internal part made of a composite chiral honeycomb that bears a flexible skin with an adequate combination of flexural stiffness and in-plane compliance. The identification of such structural frame makes possible an investigation of different actuation concepts based on diffused and discrete actuators installed in the skin or in the skin-core connection. An efficient approach is presented for the development of aeroelastic condensed models of the aileron, which are used in sensitivity studies and optimization processes. The aerodynamic performances and the energy required to actuate the morphing surface are evaluated and the definition of a general energetic performance index makes also possible a comparison with a rigid aileron. The results show that the morphing system can exploit the fluid-structure interaction in order to reduce the actuation energy and to attain considerable variations in the lift coefficient of the airfoil.

Analysis of an Elastic Boom Effect on the Dynamic Response of a Cargo (중량물의 동적 거동에 미치는 크레인 붐(boom)의 탄성 영향 분석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.421-429
    • /
    • 2010
  • In this paper, in order to analyze the dynamic response of a floating crane when it lifts a heavy cargo, the boom of the floating crane is considered as an elastic beam. The boom is divided into elements based on finite element formulation and the floating frame of reference formulation and nodal coordinates are employed to model the boom as a flexible body. As an extension of the previous study, in order to consider spatial motion in waves, the coupled equations of motions of the 6 degree of freedom (DOF) floating crane and 6 DOF cargo are developed based on the flexible multibody system dynamics. The 3 dimensional deformation of the elastic boom is considered with 18 DOF. The dynamic simulation of the floating crane and the cargo is performed under regular wave conditions with various cargo weights. Finally, the effects of the elastic boom on lifting cargo are discussed by comparing the simulation results between the elastic boom and a rigid boom.

Effects of the Flexibility on the Structural Responses of a Tension Leg Platform (인장계류식 해양구조물의 구조응답에 미치는 굽힘강성의 영향)

  • Lee, Chang-Ho;Lee, Soo-Lyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • The structural response characteristics of Tension leg platforms(TLPs) in waves are examined for presenting the basic data for structural design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the structural response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The mooring forces are estimated as the sum of pretension of tendons and variational tension due to longitudinal displacements. Stiffness matrices of elastic beam elements connecting nodes are formulated by ordinary method of three dimensional frame analysis. The equation of motion about the whole structure is obtained by the sum of forces and moments acting on each nodes.

Study of the Interaction between Tracked Vehicle and Terrain (궤도차량과 토양의 상호작용에 대한 연구)

  • Park, Cheon-Seo;Lee, Seung-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.140-150
    • /
    • 2002
  • The planar tracked vehicle model used in this investigation consists of two kinematically decoupled subsystems, i.e., the chassis subsystem and the track subsystem. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. In this study, the recursive kinematic and dynamic formulation of the tracked vehicle is used to find the vertical terce and the distance of an arbitrary track moved in the driving direction along the track. These distances and vertical forces obtained are used to get the deformation and sinkage of a terrain. The FEM(Finite Element Method) is adopted to analyze the interaction between tracked vehicle and terrain. The terrain is represented by a system of elements wish specified constitutive relationships and considered as a piecewise linear elastic, plastic and isotropic material. When the tracked vehicle is moving with different speeds on the terrain, the elastic and plastic deformations and the maximum sinkage for the four different types of isotropic soils are simulated.

A Numerical Analysis of Tolerable Settlement for Bridges (수치해석에 의한 중소형교량 교량기초의 허용침하량 평가)

  • Jung, Gyung-Ja;Jeon, Kyung-Soo;Cho, Jun-Sang;Lee, Sang-Heon;Byun, Hyung-Kyoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.569-579
    • /
    • 2010
  • Tolerable vertical displacement of a bridge is dependent on the superstructure-type, slope, span, and etc.. In the design stage, however, resultant force of cross section is examined supposed that the settlement is 1 cm at the bearing point. And the 1cm is sometimes considered as if the criteria of allowable foundation settlement. It is needed to establish the criteria of the tolerable displacement for the small and middle bridges which are widely used in domestic area. The design data of domestic bridges including expressway bridges were collected and analyzed according to the types of superstructures and foundations. And numerical simulations were conducted for RC rigid frame bridges, PSC girder bridges, IPC girder bridges, PSC box girder bridges, and steel box girder bridges to examine the tolerable displacements.

  • PDF

Behavior of Single Pole Foundation using Experimental Study (실증시험을 통한 강관주기초의 거동특성)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.598-604
    • /
    • 2010
  • The drilled pier foundation is widely used to support transmission line structures due to its simplicity of construction. When this foundation type is used in conjunction with a single shaft or H-frame structure, it is subjected to a high overturning moment, combined with modest vertical and shear loads. Since the length and diameter of drilled piers are often governed by a maximum permissible deflection, many drilled piers being installed today are very conservatively designed. In this study, Nine prototype field-tests (1/8 scale) have been conducted in order to determine the vertical and lateral resistance of drilled pier foundation for single pole structures. These test results reveal the test piers behaved essentially as rigid bodies in soil (6D) and the center of rotation of the pier were typically 0.6~0.4 of the pier depth below ground surface. Test results also show the relationship between the applied load and the deflection at the top of the pier is highly nonlinear.

  • PDF

Development of float off Operation Design for Mdlti Semi-submersible Barges with Symmetrical Stability Casings (반 잠수식 복수부선의 진수설계)

  • 양영태;최문길;이춘보;박병남;성석부
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.72-76
    • /
    • 2003
  • This paper presents the design concept and operation results of float-off for FSO (340,000 DWT Class, ELF AMENAM KPONO Project) built on the ground, without dry dock facilities. It was the first attempt to build FSO, completely, on the ground and launch it using DBU (Double Barge Unit, which was connected by rigid frame structure.) The major characteristics of FSO, which are similar to general VLCC type hull, including topside structure, weigh 51,000 metric ton. In order to have sufficient stability during the deck immersion of DBU, while passing through a minimum water plane area zone, proper trim control was completed with LMC (Load Master Computer). The major features of the monitoring system include calculation for transverse bending moment, shear force, local strength check of each connector, based on component stress, and deformation check during the load-out and float-off. Another major concern during the operation was to avoid damages at the bottom and sides of FSO, due to motion & movement after free-floating; therefore, adequate clearances between DBU and FSO were to be provided, and guide posts were installed to prevent side damage of the DBU casings. This paper also presents various measures that indecate the connector bending moment, damage stability analysis, and mooring of DBU during float off.

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;Kim, Kyung-Taek;Paik, Jin-Sung;Benker, T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.110-115
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body for the carbody was implemented in the Multi-body-Simulation Program SIMPACK. The ECB frame was modelled both as flexible body and as rigid body. Four different driving conditions were analyzed. In this study dynamic behavior in general were performed to evaluate the design of eddy current brake system and specially the effect of damper was also studied. A comparison of simulations with and without damper shows that the damper have most effect for lower speed. The simulation results will be verified by comparison with measured data from on line test and also used for improving design.

  • PDF

Linkage of Damage Evaluation to Structural System Reliability (손상평가와 구조물 신뢰성과의 연계)

  • Park, Soo Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 2003
  • Nondestructive Damage Evaluation (NDE) techniques yield the damage location and its size from the modal characteristics of pre-damaged and post-damaged structures. To predict the system reliability of the aging structure, results from the NDE are integrated into the element/component failure probabilities. The element/component failure probabilities can be calculated from failure functions for each element/component with the aid of techniques from a structural reliability analysis. In this paper, a method to estimate the system reliability of a structure that is based on the reliabilities of elements/components in a given structure is presented. The efficacy of the combination of the nondestructive damage detection and the structural reliability evaluation is demonstrated using pre-damaged and post-damaged modal data obtained from numerical simulations of a rigid frame.