DOI QR코드

DOI QR Code

Design of a morphing actuated aileron with chiral composite internal structure

  • Airoldi, Alessandro (Department of Aerospace Science and Technology, Politecnico di Milano) ;
  • Quaranta, Giuseppe (Department of Aerospace Science and Technology, Politecnico di Milano) ;
  • Beltramin, Alvise (Department of Aerospace Science and Technology, Politecnico di Milano) ;
  • Sala, Giuseppe (Department of Aerospace Science and Technology, Politecnico di Milano)
  • Received : 2013.12.17
  • Accepted : 2014.03.11
  • Published : 2014.07.25

Abstract

The paper presents the development of numerical models referred to a morphing actuated aileron. The structural solution adopted consists of an internal part made of a composite chiral honeycomb that bears a flexible skin with an adequate combination of flexural stiffness and in-plane compliance. The identification of such structural frame makes possible an investigation of different actuation concepts based on diffused and discrete actuators installed in the skin or in the skin-core connection. An efficient approach is presented for the development of aeroelastic condensed models of the aileron, which are used in sensitivity studies and optimization processes. The aerodynamic performances and the energy required to actuate the morphing surface are evaluated and the definition of a general energetic performance index makes also possible a comparison with a rigid aileron. The results show that the morphing system can exploit the fluid-structure interaction in order to reduce the actuation energy and to attain considerable variations in the lift coefficient of the airfoil.

Keywords

References

  1. Abaqus (2010), Analysis and User's Manual Version 6.10, Dassault System.
  2. Airoldi, A., Bettini, P., Zazzarini, M. and Scarpa, F. (2012a), "Failure and energy absorption of plastic and composite chiral honeycomb", Structures Under Shock and Impact XII, Schleyer, G. and Brebbia, C.A. (Ed.), WIT Press, Southampton.
  3. Airoldi, A., Crespi, M., Quaranta, G. and Sala, G. (2012b), "Design of a morphing airfoil with composite chiral structure", J. Aircraft, 49(4), 1008-1019. https://doi.org/10.2514/1.C031486
  4. Anderson, J.D. (1999), A History of Aerodynamics and its Impact on Flying Machines, Cambridge University Press, Cambridge, UK.
  5. Baker, D. and Friswell, M.I. (2009), "Determinate structures for wing camber control", Smart Mater. Struct., 18(3), 035014. https://doi.org/10.1088/0964-1726/18/3/035014
  6. Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I. and Inman, J. (2011), "A review of morphing aircraft", J. Intel. Mat. Syst. Str., 22(9), 823-827. https://doi.org/10.1177/1045389X11414084
  7. Bettini, P., Airoldi, A., Sala, G., Di Landro, L., Ruzzene, M. and Spadoni, A. (2010), "Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process", Compos. Part B. Eng., 41(2), 133-147. https://doi.org/10.1016/j.compositesb.2009.10.005
  8. Bornengo, D., Scarpa, F. and Remillat, C. (2005), "Evaluation of hexagonal chiral structure for morphing airfoil concept", Proceedings of the Institution of Mechanical Engineers Part G, J. Aerospace Eng., 219(3), 185-192. https://doi.org/10.1243/095441005X30216
  9. Campanile, L.F. and Anders, S. (2005), "Aerodynamic and aeroelastic amplification in adaptive belt-rib airfoil", Aerosp. Sci. Tech., 9(1), 55-63. https://doi.org/10.1016/j.ast.2004.07.007
  10. Campanile, L.F. and Sachau, D. (2000), "The belt-rib concept: A structronic approach to variable camber", J. Intel. Mat. Syst. Str., 11(3), 215-224. https://doi.org/10.1177/104538900772664486
  11. Gandhi, F. and Anusonti-Inthra, P. (2008), "Skin design studies for variable camber morphing airfoils", Smart Mater. Str., 17(1), 1-8.
  12. Ichrome Ltd. (2011), Nexus Documentation v. 1.1.07.
  13. Katz, J. and Plotkin, A. (1991), Low-Speed Aerodynamics, Cambridge University Press, Cambridge, UK.
  14. Lakes, R.S. (1991), "Deformation mechanisms in negative Poisson's ratio materials: Structural aspects", J. Mater. Sci., 26(9), 2287-2292. https://doi.org/10.1007/BF01130170
  15. Leng, J., Lan, X., Liu, Y. and Du, S. (2001), "Shape-memory polymers and their composites: Stimulus methods and applications", Prog. Mater. Sci., 56(7), 1077-1135.
  16. Martin, J., Heyder-Bruckner, J.J., Remillat, C., Scarpa, F., Potter, K. and Ruzzene, M. (2008), "The hexachiral prismatic wingbox concept", Phys. Status Solidi. B., 245(3), 570-577. https://doi.org/10.1002/pssb.200777709
  17. Sofla, A.Y.N., Elzey, D.M. and Wadley, H.N.G. (2008), "Two-way antagonistic shape actuation based on the one-way shape memory effect", J. Intel. Mat. Syst. Str., 19(9), 1017-1027. https://doi.org/10.1177/1045389X07083026
  18. Sofla, A.Y.N., Meguid, N.A., Tan, K.T. and Yeo, W.K. (2010), "Shape morphing of aircraft wing: Status and challenges", Mater. Design, 31(3), 1284-1292. https://doi.org/10.1016/j.matdes.2009.09.011
  19. Spadoni, A. and Ruzzene, M. (2007), "Numerical and experimental analysis of the static compliance of chiral truss-core airfoils", J. Mech. Mater., 2(5), 965-981.
  20. Yokozeki, T., Takeda, S., Ogasawara, T. and Ishikawa, T. (2006), "Mechanical properties of corrugated composites for candidate materials of fexible wing structures", Compos. Part A. Appl. S., 37(10), 1578-1586. https://doi.org/10.1016/j.compositesa.2005.10.015

Cited by

  1. Chiral topologies for composite morphing structures - Part II: Novel configurations and technological processes vol.252, pp.7, 2015, https://doi.org/10.1002/pssb.201584263
  2. Chiral topologies for composite morphing structures - Part I: Development of a chiral rib for deformable airfoils vol.252, pp.7, 2015, https://doi.org/10.1002/pssb.201451689
  3. Origami-inspired shape memory dual-matrix composite structures vol.30, pp.17, 2019, https://doi.org/10.1177/1045389x19873429
  4. Research on non-pneumatic tire with gradient anti-tetrachiral structures vol.28, pp.22, 2021, https://doi.org/10.1080/15376494.2020.1734888