References
- Abaqus (2010), Analysis and User's Manual Version 6.10, Dassault System.
- Airoldi, A., Bettini, P., Zazzarini, M. and Scarpa, F. (2012a), "Failure and energy absorption of plastic and composite chiral honeycomb", Structures Under Shock and Impact XII, Schleyer, G. and Brebbia, C.A. (Ed.), WIT Press, Southampton.
- Airoldi, A., Crespi, M., Quaranta, G. and Sala, G. (2012b), "Design of a morphing airfoil with composite chiral structure", J. Aircraft, 49(4), 1008-1019. https://doi.org/10.2514/1.C031486
- Anderson, J.D. (1999), A History of Aerodynamics and its Impact on Flying Machines, Cambridge University Press, Cambridge, UK.
- Baker, D. and Friswell, M.I. (2009), "Determinate structures for wing camber control", Smart Mater. Struct., 18(3), 035014. https://doi.org/10.1088/0964-1726/18/3/035014
- Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I. and Inman, J. (2011), "A review of morphing aircraft", J. Intel. Mat. Syst. Str., 22(9), 823-827. https://doi.org/10.1177/1045389X11414084
- Bettini, P., Airoldi, A., Sala, G., Di Landro, L., Ruzzene, M. and Spadoni, A. (2010), "Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process", Compos. Part B. Eng., 41(2), 133-147. https://doi.org/10.1016/j.compositesb.2009.10.005
- Bornengo, D., Scarpa, F. and Remillat, C. (2005), "Evaluation of hexagonal chiral structure for morphing airfoil concept", Proceedings of the Institution of Mechanical Engineers Part G, J. Aerospace Eng., 219(3), 185-192. https://doi.org/10.1243/095441005X30216
- Campanile, L.F. and Anders, S. (2005), "Aerodynamic and aeroelastic amplification in adaptive belt-rib airfoil", Aerosp. Sci. Tech., 9(1), 55-63. https://doi.org/10.1016/j.ast.2004.07.007
- Campanile, L.F. and Sachau, D. (2000), "The belt-rib concept: A structronic approach to variable camber", J. Intel. Mat. Syst. Str., 11(3), 215-224. https://doi.org/10.1177/104538900772664486
- Gandhi, F. and Anusonti-Inthra, P. (2008), "Skin design studies for variable camber morphing airfoils", Smart Mater. Str., 17(1), 1-8.
- Ichrome Ltd. (2011), Nexus Documentation v. 1.1.07.
- Katz, J. and Plotkin, A. (1991), Low-Speed Aerodynamics, Cambridge University Press, Cambridge, UK.
- Lakes, R.S. (1991), "Deformation mechanisms in negative Poisson's ratio materials: Structural aspects", J. Mater. Sci., 26(9), 2287-2292. https://doi.org/10.1007/BF01130170
- Leng, J., Lan, X., Liu, Y. and Du, S. (2001), "Shape-memory polymers and their composites: Stimulus methods and applications", Prog. Mater. Sci., 56(7), 1077-1135.
- Martin, J., Heyder-Bruckner, J.J., Remillat, C., Scarpa, F., Potter, K. and Ruzzene, M. (2008), "The hexachiral prismatic wingbox concept", Phys. Status Solidi. B., 245(3), 570-577. https://doi.org/10.1002/pssb.200777709
- Sofla, A.Y.N., Elzey, D.M. and Wadley, H.N.G. (2008), "Two-way antagonistic shape actuation based on the one-way shape memory effect", J. Intel. Mat. Syst. Str., 19(9), 1017-1027. https://doi.org/10.1177/1045389X07083026
- Sofla, A.Y.N., Meguid, N.A., Tan, K.T. and Yeo, W.K. (2010), "Shape morphing of aircraft wing: Status and challenges", Mater. Design, 31(3), 1284-1292. https://doi.org/10.1016/j.matdes.2009.09.011
- Spadoni, A. and Ruzzene, M. (2007), "Numerical and experimental analysis of the static compliance of chiral truss-core airfoils", J. Mech. Mater., 2(5), 965-981.
- Yokozeki, T., Takeda, S., Ogasawara, T. and Ishikawa, T. (2006), "Mechanical properties of corrugated composites for candidate materials of fexible wing structures", Compos. Part A. Appl. S., 37(10), 1578-1586. https://doi.org/10.1016/j.compositesa.2005.10.015
Cited by
- Chiral topologies for composite morphing structures - Part II: Novel configurations and technological processes vol.252, pp.7, 2015, https://doi.org/10.1002/pssb.201584263
- Chiral topologies for composite morphing structures - Part I: Development of a chiral rib for deformable airfoils vol.252, pp.7, 2015, https://doi.org/10.1002/pssb.201451689
- Origami-inspired shape memory dual-matrix composite structures vol.30, pp.17, 2019, https://doi.org/10.1177/1045389x19873429
- Research on non-pneumatic tire with gradient anti-tetrachiral structures vol.28, pp.22, 2021, https://doi.org/10.1080/15376494.2020.1734888