• Title/Summary/Keyword: rigid body analysis

Search Result 469, Processing Time 0.022 seconds

Identification of the Rigid Body Properties using the Mass-line of F.R.F. in Free-boundary Condition (자유경계 조건에서의 질량선에 의한 강체특성 규명)

  • 안세진;정의봉;황대선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.745-749
    • /
    • 2001
  • The rigid body properties of a structure may be estimated easily if the mass-line of the structure could be taken exactly. However, the exact mass-line cannot be obtained experimentally. In the past years, the modal analysis for which the structure is mounted on the flexible supporter is frequently used to acquire the mass-line. Unfortunately, it is difficult not only to mount the structure but also to decouple the coupled 6 dof mode. If the structure is pended by very long and flexible rope to act free, the rigid-body modes influenced by the rope will be eliminated and the improved mass-line will be obtained. In this paper, the method using the mass-line of F.R.F. for rigid body in free-condition is suggested. The robustness of the suggested method was tested and verified numerically. The experimental results also showed a good agreement with the true value.

  • PDF

A Dynamic Explicit/Rigid-plastic Finite Element Analysis and its Application to Auto-body Panel Stamping Process (동적 외연적/강소성 유한요소 해석과 차체판넬성형에의 적용)

  • 정동원;양동열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.16-25
    • /
    • 1996
  • In the present work a rigid-plastic finite element formulation using dynamic explicit time integration scheme is proposed for numerical analysis of auto-body panel stamping processes. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM(abbreviated from Bending Energy Augmented Membrane) elements are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and the direct trial-and-error method. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oilpan, a fuel tank and a front fender. The numerical results of explicit analysis are compared with the implicit results with good agreements and it is shown that the explicit scheme requires much shorter computational time, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid-plastic finite element method enables an effective computation for complicated autobody panel stamping processes.

  • PDF

Aeroelastic stability analysis of a two-stage axially deploying telescopic wing with rigid-body motion effects

  • Sayed Hossein Moravej Barzani;Hossein Shahverdi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow regime are determined by using Peters' unsteady aerodynamic model. The governing aeroelastic equations are discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is very important and will play a significant role in the design.

A REFINED SEMI-ANALYTIC DESIGN SENSITIVITIES BASED ON MODE DECOMPOSITION AND NEUMANN SERIES IN REDUCED SYSTEM (축소모델에서 강체모드 분리와 급수전개를 통한 준해석적 민감도 계산 방법)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.491-496
    • /
    • 2003
  • In sensitivity analysis, semi-analytical method(SAM) reveals severe inaccuracy problem when relatively large rigid body motions are identified for individual elements. Recently such errors of SAM resulted by the finite difference scheme have been improved by the separation of rigid body mode. But the eigenvalue should be obtained first before the sensitivity analysis is performed and it takes much time in the case that large system is considered. In the present study, by constructing a reduced one from the original system, iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The sensitivity analysis is performed by the eigenvector acquired from the reduced system. The error of SAM caused by difference scheme is alleviated by Von Neumann series approximation.

  • PDF

Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source (완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성)

  • 송희수;전진용;서상호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

An Eigen Analysis with Out-of-Plane Deformable Ring Element (면외변형 링 요소를 이용한 고유해석)

  • Moon, Won-Joo;Min, Oak-Key;Kim, Yong-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1719-1730
    • /
    • 1993
  • This paper presents the theoretical natural frequencies of out-of-plane deformable ring based on the variables such as out-of-plane deflection, torsional rotation and shear rotation. Based on the same variables, a finite element eigen analysis is carried out by using the $C^0$-continuous, isoparametric element which has three nodes per element and three degrees-of-freedom at each node. Numerical experiments are peformed to find the integration scheme which produces accurate natural frequencies, natural modes and correct rigid body motion. The uniformly reduced integration and the selective reduced integration give more accurate numerical frequencies than the uniformly full integration, but the uniformly reduced integration produces incorrect rigid body motion while selective reduced integration does correct one. Therefore, the ring element based on the three variables which employes selective reduced integration is recommended to avoid spurious modes, to alleviate the error due to shear locking and to produce correct rigid body motion, simultaneously.

Dynamic Analysis of a Chain of Rigid Rods

  • Attia, Hazem Ali
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.75-86
    • /
    • 2004
  • In this study, a recursive algorithm for generating the equations of motion of a chain of rigid rods is presented. The methods rests upon the idea of replacing the rigid body by a dynamically equivalent constrained system of particles. The concepts of linear and angular momentums are used to generate the rigid body equations of motion without either introducing any rotational coordinates or the corresponding transformation matrices. For open-chain, the equations of motion are generated recursively along the serial chains. For closed-chain, the system is transformed to open-chain by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a closed-chain of rigid rods is chosen to demonstrate the generality and simplicity of the proposed method.

  • PDF

Flexibility Effects of Frame for Vehicle Dynamic Characteristics (차량 동특성에 대한 프레임의 유연성 효과)

  • 이상범
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • Previous method of computer simulation to predict the dynamic response of a vehicle has been based on the assumption that vehicle structure is rigid. If the flexibility of the vehicle structure becomes too large to ignore, rigid body assumption will no longer give good estimation of the dynamic characteristics. Therefore, in order to predict more precise vehicle dynamic characteristics, flexible multi-body dynamic analysis of a vehicle is necessary. This paper investigates dynamic characteristics of vehicle systems with flexible frames numerically. Joint reaction forces, vertical accelerations, pitch accelerations are analyzed for the vehicle systems with various flexible frames using multi-body dynamic analysis code and finite element analysis code.

Design Parameter Analysis of a Dynamic Absorber for the Control of Machine Body Vibration (기계 진동의 수동적 제어를 위한 동흡진기 설계인자 해석)

  • Kim, Giman;Choi, Seongdae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The optimal design parameters of a dynamic absorber (DA) in a machine body (that is considered as a rigid body) are discussed in this paper. The bounce and rotation motions of the rigid body have been controlled passively by a DA, which consists of a mass and a spring. The rigid body is subjected to a harmonically excited force and supported by linear springs at both ends. To define the motion of a rigid body with a DA, the equation of motion was expressed in the third-order matrix form. To define the optimal design conditions of a DA, the reduction of dynamic characteristics, represented by the amplitudes of bounce and rotation, and the transmitted powers, were evaluated and discussed. The level of reduction was found to be highly dependent on the location and spring stiffness of the DA.

Analysis and Experiments on the Stability of Nonconservative Elastic System(Cantilever beam) subjected to Rocket Follower Force (로켓 종동력을 받는 비보존 탄성계(외팔보)의 안전성 해석 및 실험)

  • 김인성;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2467-2474
    • /
    • 1993
  • This paper deals with the cantilever subjected to a follower force which is generated by real rocket motor which has linearly decreasing thrust. The cantilever is assumed to be uniform and elastic one, In the theoretical analysis, the tip mass of rocket motor is considered as a rigid body and effects of its dynamic parameters are shown and compared with the experimental results. Particularly, the variation of the 2nd natural frequency due to the decreasing thrust is measured in the experiments and compared with the theoretical estimations. Approximate method is adopted in the theoretical analysis using Galerkin method by introducing 3-element modified operator and modified variable which represent eqation of motion and natural boundary conditions. In general, structural damping effects can be neglected and all the rigid body parameters must be taken into account in case of the short action time of the follower force and the relatively big tip mass like the system of this paper according to the experiment. Good agreement was obtained between the theoretical estimations and the experimental results by neglecting structural damping and considering all the rigid bidy parameters of the tip mass.