• Title/Summary/Keyword: rice transformation

Search Result 126, Processing Time 0.039 seconds

DNA Delivery into Embryogenic Cells of Zoysiagrass(Zoysia japonica Steud.) and Rice(Oryza sativa L.) by Electroporation (Electroporation을 이용한 잔디(Zoysia japonica Steud.) 및 벼(Oryza sativa L.) 배발생세포로의 DNA 도입)

  • 박건환;최준수;윤충호;안병준
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.309-314
    • /
    • 1994
  • To develop simple and efficient transformation methods of monocotyledonous plane, electroporation-mediated delivery of DNA into intact embryogenic cell clumps was investigated in zoysiagrass and rice. Calli of zoysiagrass, induced from 3-week-old immature embryos, were suspension-cultured in MS basic medium supplemented with 1.0 mg/t 2.4-D and used for elechuporation. Calli, derived from immature inflorescences of 20 mm lenth of rice, were also suspension-cultured on N6 basic medium supplemented with 1.0 mg/L 2.4-D. Suspension-cultured embryogenic cell clumps were electroporated in liqid MS medium added with a Plasmid DNA (30 $\mu\textrm{m}$/ml), pGA1074, encoding ${\beta}$-glucuronidiase (GUS). DNA delivery into the cells through cell walls and cell membrane was confirmed by the transient expression of the GUS gene. Cell clumps of zoysiagrass and rice, electroporated with 400 volt at 800 pF capacitance, expressed GUS gene activity at a mean frequency of 25 units (one unit = one clony of blue cells) per 200 ${\mu}\ell$ of packed cell volume. Untreated cells and healed non-embryogenic cells did not exhibit GUS activity These results indicate that electroporation-mediated transformation can use intact embryogenic cells (thus avoiding the use protoplasts) in zoysiagrass and rice.

  • PDF

Increased Thermotolerance of Transgenic Rice Plant by Introduction of Thermotolerant Gene

  • Lee, Byung-Hyun;Won, Sung-Hye;Kim, Ki-Yong;Lee, Hyoshin;Jinki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • To increase thennotolerance of forage crops, transgenic rice plants as a model for transformation of monocots were generated. A cDNA encoding the chloroplast-localized small heat shock protein (small HSP) of rice, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from scutella were co-cultivated with a A. tumefaciens strain EHAlOl canying a plasmid, pIGhsp21. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of Oshsp2l gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot and immunoblot analyses revealed that the Oshsp21 gene was constitutively expressed and accumulated as mature protein in transgenic plants. Effects of constitutive expression of the OshspZl on thermotolerance were first probed with the chlorophyll fluorescence. Results indicate that inactivation of electron transport reactions in photosystem I1 (PSII), were mitigated by constitutive expression of the Oshsp21. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress. (Key words : Thermotolerance, Rice, Transgenic, cDNA)

  • PDF

Arabidopsis cyclin D2 expressed in rice forms a functional cyclin-dependent kinase complex that enhances seedling growth

  • Oh, Se-Jun;Kim, Su-Jung;Kim, Youn Shic;Park, Su-Hyun;Ha, Sun-Hwa;Kim, Ju-Kon
    • Plant Biotechnology Reports
    • /
    • v.2 no.4
    • /
    • pp.227-231
    • /
    • 2008
  • D-class cyclins play important roles in controlling the cell cycle in development and in response to external signals by forming the regulatory subunit of cyclin-dependent kinase (CDK) complexes. To evaluate the effects of D-class cyclins in transgenic rice plants, Arabidopsis cyclin D2 gene (CycD2) was linked to the maize ubiquitin1 promoter (Ubi1) and introduced into rice by the Agrobacterium-mediated transformation method. Genomic deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and Western blot hybridizations of the Ubi1:-CycD2 plants revealed copy number of transgene and its increased expression in leaf and callus cells at messenger RNA (mRNA) and/or protein levels. The H1 kinase assay using the immunoprecipitates of protein extracts from the Ubi1:CycD2 plants and nontransgenic controls demonstrated that the introduced Arabidopsis CycD2 forms a functional CycD2/CDK complex with an unidentified CDK of rice. Shoot and root growth was enhanced in the Ubi1:CycD2 seedlings compared with nontransgenic controls, together, suggesting that Arabidopsis cyclin D2 interacts with a rice cyclin-dependent kinase, consequently enhancing seedling growth.

Properties of Modified Rice Starch by Physical Modification (물리적 변성에 의한 쌀변성전분의 이화학적 성질)

  • Kum, Jun-Seok;Lee, Hyun-Yu;Shin, Myoung-Gon;Yoo, Mi-Ra;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.428-435
    • /
    • 1994
  • Properties of modified rice starches prepared in drum drying and extrusion were evaluated to use for effective utilization. Blue value was the lowest (p<0.05) for waxy rice starch and L value was decreased after modification of starches. Water solubility index was the highest for modified starches prepared in extrusion, while water absorption index was the highest for modified starches prepared in drum drying. Cold-Water-Solubility was the highest (p<0.05) for modified rice starch prepared in drum drying (RD). Consistency index of RD was drastically increased as shear rate increased and yield stress was the highest for RD. Results of Gel Permeation Chromatography showed that starch components were broken down into lower molecular weight materials and amylose are degraded by modification. Changes in the X-ray diffrectometry pattern indicated the transformation of granule into an amorphous state during modification and illustrated V-type.

  • PDF

Density Estimation of Rice Planthoppers Using Digital Image Processing Algorithm (디지털 영상처리 알고리즘을 이용한 벼멸구류의 밀도측정)

  • 박영석;김황용;엄기백;박창규;이장명;전태수
    • Korean journal of applied entomology
    • /
    • v.42 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • Accurate forecasting of occurrence time and abundance of insect pests is essential for developing technology of integrated pest management system. Digital image processing algorithms were utilized to automatically recognize rice planthoppers which are major insect pests in the rice cultivation field and were subsequently used to estimate densities in the field for efficient forecasting of insect pests. To the images taken in the rice field, image decomposition, top-hat transformation, threshold, and minimum and maximum filter were implemented for patterning individually the brown planthopper specimens attached at the bottom area of rice stems. In average 95.8cio of images were correctly recognized for estimating densities by the developed system, and the recognition rate was higher than that obtained from direct observations by experienced observers. Furthermore, the size of the recognized specimens was measured and was used for estimating the age structure in the observed brown planthopper populations.

Molecular Analysis of Rice Plants Harboring an Ac/Ds Transposable Element-Mediated Gene Trapping System

  • Hang Gyeong;Mi Sook Choe;Sung-Ho Lee;Sung Han Park;Hyuk Kim;Ja Choon Koo;No Youl Kim;Su Hyun Park;Jeung Joo Lee
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.17-20
    • /
    • 1999
  • In rice, limited efforts have been made to identify genes by the use of insertional mutagens, especially heterologous transposons such as the maize Ac/Ds. We constructed Ac and gene trap Ds vectors and introduced them into the rice genome by Agrobacterium-mediated transformation. In this report, rice plants that contained single and simple insertions of T-DNA were analyzed in order to evaluate the gene-tagging efficiency. The 3'end of Ds was examined for putative splicing donor sites. As observed in maize, three splice donor sites were identified at the 3'end of the Ds in rice. Nearly 80% of Ds elements wered excised from the original T-DNA sites, when Ac cDNA was expressed under a CaMV 35S promoter. Repetitive ratoon culturing was performed to induce new transpositions of Ds in new plants derived from cuttings. About 30% of the plants carried at least one Ds that underwent secondary transposition in the later cultures. 8% of transposed Ds elements expressed GUS in various tissues of rice panicles. With cloned DNA adjacent to Ds, the genomic complexities of the insertion sites were examined by Southern hybridization. Half of the Ds insertion sites showed simple hybriodization patterns which could be easily utilized to locate the Ds. Our data demonstrate that the Ac/Ds mediated gene trap system could prove an excellent tool for the analysis of functions of genes in rice. We discuss genetic strategies that could be employed in a largee scale mutagenesis using a heterologous Ac/Ds family in rice.

  • PDF

Technical Development for Large DNA Fragment Transformation in Plants

  • Park, Su-Ryun;Seo, Mi-Suk;Lee, Sang-Kug;Park, Jee-Young;Kim, Hye-Ran;Lee, Hyo-Yeon;Bang, Jae-Wook;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • For large DNA fragment transformation in dicots and monocots, BIBAC2 vector system was applied to Arabidopsis thaliana and Oryza sativa L. cv. Jinmi as a model plant, respectively. For Arabidopsis, the Th1 gene in T23L3 BAC clone whose size is about 90 kb was used as the target gene source for transformation. Because T23L3 BAC clone was originally constructed in pBelloBAC11, the target gene was reconstructed into BIBAC2. As the results of reconstruction, 476 colonies were survived in selection medium containing 40 mg/L kanamycin. In colony hybridization analysis, 24 out of 476 colonies exhibited positive signals. In the pulsed-field gel electrophoresis analysis, 11 out of 24 positive clones exhibited the band at the location of 90 kb. In Southern hybridization, positive signal band at the location of 90 kb was observed in all 11 transformants. Using these verified clones, Agrobacterium-mediated transformation was applied to Arabidopsis thaliana th1-201 mutant for genetic complementation test. Twelve thousands T$_1$ seeds were harvested, and antibiotic selection test is being analyzed to verify whether these seeds were transformed. for rice, COR356 that contains 150 kb human genomic DNA in a BIBAC2 vector was used as the target gene. As the results of transformation, 151 out of 210 co-cultivated calli were survived in selection medium containing 5 mg/L hygromycin, and 45 out of 151 survived calli were regenerated into plants. Transformation efficiency was 21.6%. Progeny test using 71 seeds is being analyzed now. These results provide the potential that large DNA fragments can be transferred into both dicots and monocot by Agrobacterium-mediate d transformation system.

  • PDF

Stable expression of brazzein protein, a new type of alternative sweetener in transgenic rice (형질전환 벼에서 brazzein 감미단백질의 안정적인 발현)

  • Lee, Ye Rim;Akter, Shahina;Lee, In Hye;Jung, Yeo Jin;Park, So Young;Cho, Yong-Gu;Kang, Kwon Kyoo;Jung, Yu Jin
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Brazzein is the smallest sweet protein and was isolated from the fruit pulp of Pentadiplandra brazzeana Baillon, native to tropical Africa. From ancient times, the indigenous people used this fruit in their diet to add sweetness to their daily food. Brazzein is 500 to 2000 times sweeter than sucrose on a weight basis and 9500 times sweeter on a molar basis. This unique property has led to increasing interest in this protein. However, it is expensive and difficult to produce brazzein other than in its native growing conditions which limits its availability for use as a food additive. In this study, we report high production yields of, brazzein protein in transgenic rice plants. An ORF region encoding brazzein and driven by the $2{\times}CaMV\;35S$ promoter was introduced into rice genome (Oryza sativa Japonica) via Agrobacterium-mediated transformation. After transformation, 17 regenerated plant lines were obtained and these transgene-containing plants were confirmed by PCR analysis. In addition, the selected plant lines were analyzed by Taqman PCR and results showed that 9 T0 lines were found to have a single copy out of 17 transgenic plants. Moreover, high and genetically stable expression of brazzein was confirmed by western blot analysis. These results demonstrate that recombinant brazzein was efficiently expressed in transgenic rice plants, and that we have developed a new rice variety with a natural sweetener.