• Title/Summary/Keyword: rice starch

Search Result 730, Processing Time 0.026 seconds

Effect of Acetylated Rice Starch on Rheological Properties of Surimi Sol and Gel

  • Jung, Young-Hwa;Kim, Won-Woo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.817-821
    • /
    • 2007
  • The effect of acetylated rice (AR) starch at different concentrations (0, 4, 6, and 8%) on rheological properties of surimi sols and gels was studied. Dynamic frequency sweeps of surimi-AR starch sols at $10^{\circ}C$ showed that the magnitudes of storage moduli (G') decreased with an increase in starch concentration while those of tan ${\delta}$ increased, indicating that the effect of AR starch on the viscoelastic properties of surimi sols depended on starch concentration. In general, the G' thermograms of surimi sols showed the similar sol-gel transition pattern and they were also influenced by the addition of AR starch. The presence of AR starch in the surimi gel system reduced the gel strength and expressible moisture content (EMC). Surimi-AR starch gels showed better freeze-thaw stability compared to the control (0% starch concentration). The effect of AR starch on the rheological properties of surimi sols and gels appeared to be related to the swelling ability of starch granules in the presence of limited water available for starch.

Structural and physicochemical characterization of starch from Korean rice cultivars for special uses (특수용도 쌀품종 내 전분의 구조적 및 이화학적 특성)

  • Lee, Seul;Lee, Eun-Jung;Chung, Hyun-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Molecular structure, physicochemical properties, and in vitro digestibility of starch from Korean rice cultivars for special uses (Baegjinju 1, Hanareum, Deuraechan, and Goami 4) were investigated. The starch from Baegjinju 1 had the lowest amylose content (9.7%) and Hanareum, Deuraechan, and Goami 4 had intermediate amylose (20-25%) contents. Baegjinju 1 had a lower proportion of short amylopectin branch chains than the other rice starches. Hanareum had the lowest relative crystallinity and the highest intensity ratio of $1047cm^{-1}/1022cm^{-1}$ among the rice starches. The starch from Goami 4 had a higher pasting temperature and lower gelatinization enthalpy than the other rice starches. Peak viscosity of rice starch from Baegjinju 1 was substantially higher than peak viscosity of other rice starches. Rice starch from Baegjinju 1 had significantly higher rapidly digestible starch content and lower resistant starch content than other rice starches, whereas there was no significant difference in resistant starch content among the rice starches.

A Study on Texture of Jeung-pyun According the Kinds of Rice (쌀 품종에 따른 증편의 조직특성에 관한 연구)

  • 김효진;이숙미;조정순
    • Korean journal of food and cookery science
    • /
    • v.13 no.1
    • /
    • pp.7-15
    • /
    • 1997
  • The composition and polymeric structure of starch are the most important factors to determine the functional properties of rice. In an effort to relate the structural characteristics and its functional properties of starch in rice, molecular structural properties of starch from 6 rice cultivars were analysed. To relate the structure and function of starch the texture of Jeung-pyun made of rice were analyzed during retrogradation. The polymeric structure of rice starch was analyzed by debranching with isoamylase after gelatinization and fractionated with Sephadex G-75 gel filteration. The size fractionated debranched starch was categorized into four groups such as Fraction I, II, III and Intermediate Fraction depending in their max, The fractions with the max higher than 620 nm were designated as Fraction I, while those in the range of 600-620 nm and 540-600 nm as the Intermediate Fraction and Fraction II, respectively. The Fractions with the max lower than 540 were described as Fraction III. The average degree of polymerization (DP) of the Fraction I was estimated to be higher than 200, and those of other fractions, i.e. the Intermediate Fraction I, Fraction II and III were 150,45 and 25, respectively. The levels of Fraction I were varied from II to 35% of total sugar. The Fraction I showed the linear relationship with the amylse contents, and the Intermediate Fraction, which might contain the mixture of short chain of amylose and debranched long chain of amylopectin, were measured to be in the range of 2.7∼8.4%. The levels of fraction II and III, both to be considered as the branches of amylopectin, were ranged 14.5∼23.6% and 39.7∼73.0%, respectively. The ratio of Fraction III to Fraction II describing the degree of branch or compactness of amylopectin was estimated to be around 4.0 for waxy varieties and around 2.0 for high amylose cultivars. With these results, it can be suggested that the degree of branch of the amylopectin may effect on amylose contents of starch or rice versa, To invertigate processing aptitude of different rice cultivars for the preparation of Jeung-pyun, its texture was analyzed by Instron, hardness, cohesiveness, elasticity, gumminess and chewiness of Jeung-pyun made of rice showed the significant relationship with the amylose content. Hardness was increased during retrogradation of product, but the relationship between hardness and amylose content due to not only difference in amylose content but also difference in structural characteristics of starch. In analysis of relationship between structure of rice starch and mechanical properties of Jeung-pyun during retrogradation elasticity did not show any relationship before retrogradation bur during retrogradation showed significant correlation. With these result, it can be suggested that the degree of branch of the amylopectin may effect on elasticity during retrogradation. However hardness, cohesiveness, gumminess and chewiness which were significant different before retrogradation, showed some correlation with structure of rice starch during retrigradation.

  • PDF

Properties of Modified Rice Starch by Physical Modification (물리적 변성에 의한 쌀변성전분의 이화학적 성질)

  • Kum, Jun-Seok;Lee, Hyun-Yu;Shin, Myoung-Gon;Yoo, Mi-Ra;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.428-435
    • /
    • 1994
  • Properties of modified rice starches prepared in drum drying and extrusion were evaluated to use for effective utilization. Blue value was the lowest (p<0.05) for waxy rice starch and L value was decreased after modification of starches. Water solubility index was the highest for modified starches prepared in extrusion, while water absorption index was the highest for modified starches prepared in drum drying. Cold-Water-Solubility was the highest (p<0.05) for modified rice starch prepared in drum drying (RD). Consistency index of RD was drastically increased as shear rate increased and yield stress was the highest for RD. Results of Gel Permeation Chromatography showed that starch components were broken down into lower molecular weight materials and amylose are degraded by modification. Changes in the X-ray diffrectometry pattern indicated the transformation of granule into an amorphous state during modification and illustrated V-type.

  • PDF

Studies on the Improvement of Milling, Quality and Storage of Tongil (Indica Type) Rice -Part II. Properties of Tongil Rice Starch- (통일벼의 도정과 품질 및 저장개선 방안에 관한 연구 -제2보 통일쌀 녹말의 특성-)

  • Chung, Dong-Hyo;Lee, Hyun-Yoo
    • Korean Journal of Food Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.179-184
    • /
    • 1976
  • Properties of starch from three rice varieties in Korea, Indica types Tongil, Yusin and a Japonica type Jinheung were investigated. 1) Gelatinization temperatures of Tongil, Yushin and Jinheung rice were $72^{\circ}C,\;70^{\circ}C\;and\;68{\sim}69^{\circ}C$ respectively. Gelatinization temperature of Indica variety was higher than that of Japonica variety. 2) Blue values of Tongil, Yusin and Jinheung rice starch were 0.40, 0.39 and 0.35 respectively, in which differences among rice varieties were small. 3) Color intensity of three varieties of rice starch with iodine gave rise to absorption maxima at $610{\sim}625\;nm$. 4) Amylose contents of Tongil, Yusin and Jinheung rice starch were 23.2%, 21.3% and 20.6% respectively, which were lower than those of other cereals. Amylose content of Indica variety was higher than that of Japonica variety. 5) Alkali numbers of Tongil, Yusin and Jinheung rice starchs were 7.0, 7.0 and 6.8, respectively. The differences were negligible among rice varieties. Those values were higher than that of glutinous rice starch.

  • PDF

Rheological Properties of Gelatinized Dilute Rice Starch Solutions (쌀전분 희석 호화액의 유동학적 특성)

  • Kim, Young-Sug;Kim, Ju-Bong;Lee, Shin-Young;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 1984
  • Rheological properties of waxy and non-waxy rice starch solutions were evaluated with a narrow gap rotational and Cannon Fenske viscometers. The gelatinized rice starch solutions containing 0.2-1.0% starch displayed pseudoplastic flow behavior. At higher starch level, degree of pseudoplasticity of waxy rice starch solutions increased, while that of non-waxy rice did not changed apparently. The consistency coefficient (K) of non-waxy rice starch solutions increased with increasing gelatinization temperature, but waxy rice starch solutions remained constant, and in alkaline aqueous solutions both of them showed increasing K values. The value of K increased exponentially with an increase in concentration. The effect of the temperature on the viscosity of the solutions followed Arrhenius' type equation, and the activation energies were in the range of 3.675-3.775 kcal/g-mol that were near to that of pure water. The changes of reduced viscosity with concentration were followed Huggin's equation and the values of intrinsic viscosity and interaction coefficient were 0.78-1.59 dl/g and 0.67-2.75, respectively.

  • PDF

Molecular Structural Properties of Chindo Black Rice Starch (진도산 검정쌀 전분의 분자구조적 특성)

  • Park, Jong-Hoon;Oh, Keum-Soon;Kang, Kil-Jin;Kim, Kwan
    • Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.241-246
    • /
    • 2000
  • In order to investigate structural properties of Chindo black rice(grown in Chindo, Chonnam) starch and its amylopectin, Chindo black rice was investigated in comparison to Shinsun waxy rice. The maximum absorbance wave and intrinsic viscosity of Chindo black rice starch and Shinsun waxy rice starch were 523 nm, 521 nm and 183 ml/g, 178 ml/g, respectively. ${\beta}-amylolysis$ limit(%) of Chindo black rice and Shinsun waxy rice starch were 62.8% and 60.3%, respectively. Chindo black rice was determined to be a waxy rice due to the results of iodine reaction and elution profile on Sephroce CL-2B. The chain of amylopectins in Chindo black rice distributed fraction 1$(F_1)$ of above degree of polymerization$({\overline{DP}})$ 55, fraction 2$(F_2)$ of ${\overline{DP}} $40{\sim}50$ and fraction 3$(F_3)$ of ${\overline{DP}} $15{\sim}20$, and the ratio of $F_3$ to $F_2$ for Chindo black rice was higher than that for Shinsun waxy rice. The super long chain of amylopectin in Chindo black rice was consisted much more than that of Shinsun waxy rice. ${\beta}-limit$ dextrins in Chindo black rice amylopectin distributed $F_1$ of above ${\overline{DP}} 55, $F_2$ of ${\overline{DP}} $30{\sim}45$ and $F_3$ of ${\overline{DP}} $10{\sim}20$. Little difference was shown between elution patterns of the pullulanase treated ${\beta}-limit$ dextrins of Chindo black rice amylopectin and Shinsun waxy rice amylopectin. These results suggest that Chindo black rice starch was similar to Shinsun waxy rice starch.

  • PDF

Correlation of morphological changes of rice starch granules with rheological properties during heating In excess water (가열 조리시 쌀 전분 입자들의 형태학적 변화와 리올로지 특성과의 관계)

  • Lee, Young-Eun;Osman, Elizabeth M.
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.379-385
    • /
    • 1991
  • Morphological changes of starch granules from 12 different varieties of rice were examined by scanning electron microscopy during heating at 2.5% (w/v) concentration. Rice starch granules proceeded through a similar pattern of progressive morphological changes daring heating, regardless of variety. Rice starch granules began to swell radially in the initial stage of gelatinization and then undergo radial contraction and random tangential expansion to form complex structures in the latter stage of gelatinization temperature range. At higher temperatures, starch granules softened and melted into thin flat discs, and then stretched into thin filaments to form three-dimensional networks. These progressive morphological changes were reflected in the changes of swelling power, solubility and amylograph viscosity of starch. During the transition of melting or softening, swelling power, solubility and amylograph viscosity increased rapidly. The time of loss of granular structure of starch depended on gelatinization temperature range. The ratio of amylose to amylopectin was largely responsible fur the rate of melting or softening and the fineness of a three-dimensional filamentous network above the gelatinization temperature range. Therefore, both the gelatinization temperature range and amylose content of starch affect the rate of cooking, and amylose content of starch affects the final texture of cooked starch paste.

  • PDF

Enzyme-Resistant Starch Content, Physical and Sensory Properties of Tarakjuk (Milk-Rice Porridge) with Different Amylose Content (아밀로즈 함량별 타락죽의 효소저항전분 함량, 물리적 및 관능적 특성)

  • Lee, Gui-Chu;Kim, Jung-Eun;Kim, Yoon-Sun
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.2
    • /
    • pp.171-178
    • /
    • 2006
  • Tarakjuk with different amylose content was made up using roasted rice flours that consisted of the highest enzyme-resistant starch (RS), while differential scanning calorimetry (DSC) was also utilized to measure the gelatinization temperature of these roasted rice flours in order to establish cooking temperature of tarakjuk. The following qualities of tarakjuk with different amylose content were studied: color, viscosity, spreadability, starch fractions involving total starch (TS), rapidly digestible starch (RDS), slowly digestible starch (SDS) and RS, in vitro starch digestibility (IVSD) and sensory properties. During experimentation, it was found that as the amylose content of the rice flour decreased, the L value of tarakjuk decreased, whereas a value increased significantly (p<0.05). Also, while viscosity showed to increase significantly (p<0.05), on the opposite end, the property of spreadability decreased. TS ranged from $15.95{\sim}17.31%$, RDS $9.36{\sim}10.16%$, SDS $5.46{\sim}6.91%$ and RS $0.33{\sim}1.07%$, on a dry basis. Although the amylose content of rice flours decreased, IVSD increased, however showing no significant difference. When testing the sensory properties of tarakjuk, color and viscosity increased, whereas clumpiness decreased. Ilpum tarakjuk showed the highest score for nutty taste and overall acceptance levels. In fact a high correlation was shown between nutty taste and overall acceptance level (p<0.01), which leads one to believe that nutty taste is a prime factor that greatly influences overall acceptance. Furthermore, viscosity was positively correlated with both a and b values, however negatively correlated with L value (p<0.05). Moreover, roasted nutty taste and overall acceptance were positively correlated with a value (p<0.05), respectively. In conclusion, the above results suggest that tarakjuk could be made by choosing the appropriate rice flour based on the nutritional or sensory purpose.

Preparation and Physicochemical Characteristics of Octenyl Succinated Rice Starches Based on Amylose Content (아밀로오스 함량에 따른 옥테닐호박산 쌀전분의 제조 및 이화학적 특성)

  • Jung, Myung-Hoon;Youn, Kwang-Sup
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.577-582
    • /
    • 2012
  • The purpose of this study was to investigate the preparation and physicochemical characteristics of n-octenylsuccinylated (OSAn) rice starches with different rice amylose contents. Amylose contents of Jinsumi flour and Milyang 261 flour were 15.42 and 20.31%, respectively. After processing by alkali treatment, amylose contents of Jinsumi rice starch and Milyang 261 rice starch were 34.21% and 39.32%, respectively. After OSAn treatment, the degree of substitution and reaction efficiency of Jinsumi starch were higher than those of Milyang 261. The stability of the modified Jinsumi emulsion was higher than that of the Milyang 261 emulsion. Viscosity of the Jinsumi emulsion was higher than that of the Milyang 261 emulsion. When the emulsions were spray dried, modified Jinsumi rice starch showed excellent coating efficiency compared to that of modified Milyang 261 rice starch. Therefore, Jinsumi was more suitable than Milyang 261 to apply for encapsulation as wall materials.