• Title/Summary/Keyword: rice proteins

Search Result 249, Processing Time 0.025 seconds

A GSK-3/SHAGGY-Related Protein Kinase is Involved in Phytochrome Signal Transduction Pathway

  • Kwak, Su-Nam;Kong, Sam-Geun;Hahn, Tae-Ryong;Kim, In-Soo
    • Journal of Photoscience
    • /
    • v.7 no.3
    • /
    • pp.123-128
    • /
    • 2000
  • Phosphorylation of cellular proteins is a key regulatory mehanism for signal transduction pathway in living cells. Phytochrome, a red/far-red light photoreceptor in plants, is known to employ protein phosphorylation for its light signaling, although its detauked mechanism is still ambiguous. This study is intended to identify the phosphoproteins and protein kinases that are regulated by phytochrome, by employing transgenic rice seedlings that overexpress Arabidopsis phytochrome A. Red light stimulated phsophorylation of a 70 kDa protein and far-red light negated the effect. The red light induced phosphotylation of the 70 kDa protein was strongly activated by heparin and inhibited by poly-L-lysine, suggesting that the 70 kDa protein phosphorylating kinase belongs to GSK-3/SHAGGY protein kinase that has functional roles in establishing cell fate and pattern formation in Drosophila. Taken together with the fact that phytochrome controls plant development, these results may suggest that a GSK-3/SHAGGY-related protein kinase in plant(ASK) is likely to be involved in phytochrome signal transduction.

  • PDF

Heterogeneous overexpression of Oryza sativa salt induced RING Finger protein OsSIRF1 positively regulates salt and osmotic stress in transgenic Arabidopsis

  • Chapagain, Sandeep;Jang, Cheol Seong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.150-150
    • /
    • 2017
  • Plants suffer from various abiotic stresses among them; soil salinity is one of major adverse factor in declining agricultural productivity. So, development of salt stress tolerance crops have potential role to increase crop production. The RING finger proteins are known to play crucial roles in abiotic stress environment to plants. In this study, we identified one Salt-responsive Really${\underline{I}nteresting}$ ${\underline{n}ew}$ ${\underline{g}ene}$ (RING) E3 ubiquitin ligase gene OsSIRF1 from rice root tissues during salt stress and studied its molecular function. Expression of OsSIRF1 was induced under various abiotic stress conditions, including salt, heat, drought, and ABA. Result of an in vitro ubiquitination assay clearly showed that OsSIRF1 Possess an E3 ligase activity. Moreover, OsSIRF1 was found to be localized to the nucleus within the cell. Heterogeneous overexpression of OsSIRF1 in Arabidopsis improved seed germination and increased root length under salt and Manitol stress conditions. Taking together, these results suggested that OsSIRF1 may be associated with plant responses to abiotic stressors and positively regulates salt and osmotic stress environment.

  • PDF

Decrease of Photochemical Efficiency Induced by Methyl Viologen in Rice(Oryza sativa L.) Leaves is Partly due to the Down-Regulation of PSII

  • Kim, Jin-Hong;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.65-70
    • /
    • 2002
  • In the rice leaves treated with methyl viologen (MV), the photochemical efficiency of PSII (or $F_{v/}$F $m_{m}$) was significantly decreased, and significant portion of the photoinactivation process was reversible during the dark-recovery. The dark-reactivation process was relatively slow, reaching its plateau after 2-2.5 h of dark incubation. The damaged portion of functional PSII was 13%, based on the value of I/ $F_{o}$- I/ $F_{m}$ after this dark-recovery period. The reversible photoinactivation process of PSII function in the MV-treated leaves consisted of a xanthophyll cycle-dependent development of NPQ and a xanthophyll cycle-independent process. The latter process was reversible in the presence of nigericin. As well as the increase in the values of Chl fluorescence parameters, the epoxidation process during the dark-recovery after the MV-induced photooxidation was very slow. These results suggest that the photooxidative effect of MV is partly protected by the down-regulation of PSII before inducing physical damages in core proteins of PSII.I.I.I.I.

  • PDF

A Nucleolar Protein, MoRRP8 Is Required for Development and Pathogenicity in the Rice Blast Fungus

  • Minji Kim;Song Hee Lee;Junhyun Jeon
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.273-280
    • /
    • 2023
  • The nucleolus is the largest, membrane-less organelle within the nucleus of eukaryotic cell that plays a critical role in rRNA transcription and assembly of ribosomes. Recently, the nucleolus has been shown to be implicated in an array of processes including the formation of signal recognition particles and response to cellular stress. Such diverse functions of nucleolus are mediated by nucleolar proteins. In this study, we characterized a gene coding a putative protein containing a nucleolar localization sequence (NoLS) in the rice blast fungus, Magnaporthe oryzae. Phylogenetic and domain analysis suggested that the protein is orthologous to Rrp8 in Saccharomyces cerevisiae. MoRRP8-GFP (translational fusion of MoRRP8 with green fluorescence protein) co-localizes with a nucleolar marker protein, MoNOP1 fused to red fluorescence protein (RFP), indicating that MoRRP8 is a nucleolar protein. Deletion of the MoRRP8 gene caused a reduction in vegetative growth and impinged largely on asexual sporulation. Although the asexual spores of DMorrp8 were morphologically indistinguishable from those of wild-type, they showed delay in germination and reduction in appressorium formation. Our pathogenicity assay revealed that the MoRRP8 is required for full virulence and growth within host plants. Taken together, these results suggest that nucleolar processes mediated by MoRRP8 is pivotal for fungal development and pathogenesis.

Effects of Fermented Rice Wine by Using Mycelium of Phellinus linteus on the Expression of Inflammation-Related Proteins in Human Hepatoma Cells and Rat Liver (상황버섯 균사체를 이용한 발효주가 인체간암세포와 흰쥐 간의 염증관련 단백질 발현에 미치는 영향)

  • Ahn Seung-Min;Lee Jun-Hyuk;Choi Yung-Hyun;Lee Yong-Tae;Chung Kyung-Tae;Jeong Young-Kee;Jo Un-Bock;Choi Byung-Tae
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.101-107
    • /
    • 2006
  • We have recently discovered that mycelium of Phellinus linteus, popular medical mushrooms in Korea, possess alcohol dehydrogenase and produce alcohol. In the present study, it was examined that the effect of fermented rice wine made by using mycelium of P. linteus (FLMP) on the expression of in-flammation-related proteins in both $HepG_2$ cells and rats. To examine the effect of FLMP on the morphology and expression of inflammatory proteins in $HepG_2$ cells, the cells were incubated with ethanol, and FLMP for 24 hours, and then analyzed by microscopic observation and Western blot and reverse transcription polymerase chain reaction (RT-PCR). While ethanol induced the morphological change accompanied with cell debris formation and scattering on $HepG_2$ cells, FLMP had no effect. The results of Western blot and RT-PCR analyses showed that the level of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-1 and COX-2 was induced by ethanol, however, FLMP inhibited the expression of these proteins and its mRNAs. In the animal model, the value of flutamate oxaloacetate transaminase and glutamate pyruvate transaminase was significantly increased by administration with ethanol. But the group administrated with FLMP showed lower levels on the changes of these markers compared with ethanol-administrated group. Besides, the results of Western blot and RT-PCR analyses showed that the expression of inflammatory proteins such as iNOS, COX-1 and COX-2 was not affected by FLMP administration in rat liver. About histopathological and immunohistochemical observations, inflammatory loci were markedly decreased in the FLMP-administrated rat compared to ethanol-administrated rats and showed weaker COX-2 and iNOS jmmunoreactions. These results suggested that FLMP showed slight changes on the inflammatory proteins expression compared to ethanol and FLMP may be used as a functional alcoholic beverage.

Enhanced Production of hCTLA4Ig through Increased Permeability in Transgenic Rice Cell Cultures (형질전환 벼 현탁세포 배양에서 투과성 증진을 통한 hCTLA4Ig의 생산성 증대)

  • Choi, Hong-Yeol;Cheon, Su-Hwan;Kwon, Jun-Young;Lim, Jung-Ae;Park, Hye-Rim;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • In this system, rice cells were genetically modified to express human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) using RAmy3D promoter induced by sugar depletion. Even though the target protein fused with signal sequence peptide, plant cell wall can be a barrier against secretion of recombinant proteins. Therefore, hCTLA4Ig can be trapped inside cell wall or remained in intracellular space. In this study, to enhance the secretion of hCTLA4Ig from cytoplasm and cell walls into the medium, permeabilizing agents, such as dimethyl sulfoxide (DMSO), Triton X-100 and Tween 20, were applied in transgenic rice cell cultures. When 0.5% (v/v) of DMSO was added in sugar-free medium, intracellullar hCTLA4Ig was increased, on the other hand, the secreted extracellular hCTLA4Ig was lower than that of control. DMSO did not give permeable effects on transgenic rice cell cultures. And Triton X-100 was toxic to rice cells and also did not give enhancing permeability of cells. When 0.05% (v/v) Tween 20 was added in rice cell cultures, however, intracellular hCTLA4Ig was lower than that of control cultures. And the maximum 44.76 mg/L hCTLA4Ig was produced for 10 days after induction, which was 1.4-fold increase compared to that of control cultures. Especially, Tween 20 at 0.05% (v/v) showed the positive effect on the secretion of hCTLA4Ig though the decrease of intracellular hCTLA4Ig. Also, Tween 20 as a non-toxic surfactant did not affect the cell growth, cell viability and protease activity. In conclusion, secretion of hCTLA4Ig could be increased by enhancing permeability of cells regardless of the cell growth, cell viability and protease activity.

Development of rice(Oryza sativa L.) transformation system to improve callus utilization (캘러스 활용도를 향상시키기 위한 벼(Oryza sativa L.) 형질전환 시스템 구축)

  • Park, Ji-Sun;Moon, Ki-Beom;Ha, Jang-Ho;Jang, Ji-Young;Kim, Mi-Jin;Jeon, Jae-Heung;Park, Sang-Un;Kim, Hyun-Soon
    • Korean Journal of Breeding Science
    • /
    • v.49 no.3
    • /
    • pp.170-179
    • /
    • 2017
  • Plant molecular farming has attracted a lot of attention lately in the field of mass production of industrially valuable materials by extending application of the plant as a kind of factory concept. Among them, protein expression system using rice(Oryza sativa L.) callus is a technology capable of mass culture and industrialization because of a high expression rate of a target protein. This study was carried out to develop an Agrobacterium-mediated transformation system to increase the utilization of rice callus. The transformation efficiency was improved by using the hand when seeds were de-husked for callus induction. Furthermore, we were possible induction of callus from 6 years old seed smoothly. Selection of the callus contained the target gene was required a cultivation period of at least 3 weeks, and the most efficient selection period was after 6 weeks of culture including one passage. This selection was confirmed that the gene was stably inserted into the genomic DNA of the plant cell by the southern blot analysis and progeny test. Such an efficient selection system of rice callus that can be cultured in the long term will be contribute to the industrialization of useful recombinant proteins using rice.

Extraction and fractionation of proteins haying both chitinase and ${\beta}-1,3-glucanase$ canase activities from rice leaves ($Chitinase/{\beta}-1,3-glucanase$ 활성 동시보유 벼잎단백질 분획의 성질)

  • Uhm, Sung-Yon;Kim, Su-Il
    • Applied Biological Chemistry
    • /
    • v.36 no.5
    • /
    • pp.370-375
    • /
    • 1993
  • Five electrophoretic bands of crude enzyme extracted from rice leaves were found to possess both chitinase and ${\beta}-1,3-glucanase$ activities. These $chitinase/{\beta}-1,3-glucanase$ were resolved into acidic and basic fractions of protein by DEAE-cellulose and chitin affinity column chromatography. The optimal pH and temperature for ${\beta}-1,3-glucanase$ activity of two fractions were in the same extent as pH 5 and $60^{\circ}C$, whereas those for chitinase activity differed from one another; pH 3 and $60^{\circ}C$ for the acidic and pH 4 and $50^{\circ}C$ for the basic fraction, respectively. In addition, lysozyme activity was found in both fractions.

  • PDF

Effects of Rice Bran Extracts Fermented with Lactobacillus plantarum on Neuroprotection and Cognitive Improvement in a Rat Model of Ischemic Brain Injury

  • Hong, Jeong Hwa;Kim, Ji Yeong;Baek, Seung Eun;Ingkasupart, Pajaree;Park, Hwa Jin;Kang, Sung Goo
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.92-102
    • /
    • 2015
  • This work aimed to study whether rice bran extract fermented with Lactobacillus plantarum (LW) promotes functional recovery and reduces cognitive impairment after ischemic brain injury. Ischemic brain injury was induced by middle cerebral artery occlusion (MCAO) in rats. Four groups were studied, namely the (1) sham, (2) vehicle, (3) donepezil, and (4) LW groups. Animals were injected with LW once a day for 7 days after middle cerebral artery occlusion. LW group showed significantly improved neurological function as compared to the vehicle group, as well as enhanced learning and memory in the Morris water maze. The LW group showed the greatest functional recovery. Moreover, the LW group showed an enhanced more survival cells anti-apoptotic effect in the cortex and neural cell densities in the hippocampal DG and CA1. In addition, this group showed enhanced expression of neurotrophic factors, antioxidant genes, and the acetylcholine receptor gene, as well as synaptophysin (SYP), Fox-3 (NeuN), doublecortin (DCX), and choline acetyltransferase (ChAT) proteins. Our findings indicate that LW treatment showed the largest effects in functional recovery and cognitive improvement after ischemic brain injury through stimulation of the acetylcholine receptor, antioxidant genes, neurotrophic factors, and expression of NeuN, SYP, DCX, and ChAT.

Water Extract from Rice Bran Fermented with Lactobacillus plantarum Hong Inhibits Thromboxane A2 Production Associated Microsomal Enzyme Activity in Human Platelets

  • Kim, Hyun-Hong;Hong, Jeong Hwa;Ingkasupart, Pajaree;Lee, Dong-Ha;Yeo, DaNa;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.188-197
    • /
    • 2015
  • In this study, we investigated the effect of rice bran water extract fermented with Lactobacillus plantarum Hong (RBLw), on activities of cyclooxygenase-1 (COX-1) and thromboxane $A_2$ synthase (TXAS), thromboxane $A_2$ ($TXA_2$) production associated microsomal enzymes and evaluated its the antiplatelet effect. RBLw, containing 13.5 mg of ferulic acid, dose-dependently inhibited ADP-induced platelet aggregation, and inhibited the production of $TXA_2$, an aggregation molecule. In addition, RBLw directly inhibited COX-1 activity in a dose-dependent manner, but not TXAS activity in platelet microsomal fraction having cytochrome c reductase (an endoplasmic reticulum marker enzyme) activity and expressing COX-1 (72 kDa) and TXAS (60.5 kDa) proteins. These results suggest that RBLw selectively inhibited the activity of COX-1 rather than TXAS to attenuate $TXA_2$ production in ADP-activated platelets. Thus, we demonstrate that RBLw might have direct COX-1 antagonistic function for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.