• 제목/요약/키워드: rice paddy soils

Search Result 352, Processing Time 0.025 seconds

Distribution of Cadmium, Copper, Lead, and Zinc in Paddy Soils around an Old zinc Mine (가학광산 주변 논토양의 카드뮴, 구리, 납 및 아연 함량 분포)

  • Yoo, Sun-Ho;Ro, Kwang-Jun;Lee, Sang-Mo;Park, Moo-Eon;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.424-431
    • /
    • 1996
  • This study was carried out to provide information for establishing counter measures of soil pollution through analysis of Cd. Cu, Pb, and Zn in paddy soils and brown rice. Cadmium, Cu, Pb, and Zn contents in soils were analyzed and distribution maps for these heavy metals were prepared. Heavy metal contents in brown rice were also measured. Average contents of Cd, Cu, Pb, and Zn in surface paddy soils extracted with 0.1 N HCl were 7.4, 35.8, 98.9, and $118.8mg\;kg^{-1}$, respectively. These were 9 times (Cu) to 50 times (Cd) higher than the background level of heavy metals in unpolluted paddy soils in Korea. The contents of Pb and Zn were lower than those measured in 1980, whereas Cd content did not decrease. The levels of heavy metal contamination in paddy soils may not affect growth or yield of rice plant, however, Cd contents indicated a level of serious concern to humans. The average contents of Cd, Cu, Pb, and Zn in brown rice were 0.38, 2.38, 1.31 and $22.31mg\;kg^{-1}$, respectively.

  • PDF

Analysis of Paddy Soil Chemical Properties and Rice Quality in Central Area (Sejong) in Korea

  • Choi, Nag-Gor;Park, Jong-Hyun;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • This study was carried out to review and compare crop cultivations upon chemical properties of paddy soil and qualitative characteristics of rice in Sejong-city from a point of view of farming extension to rice farmers and to utilize the result of the study as a basic guideline for precise agricultural practice. The pH in soils of Sejong was about 6.1-6.6 and had no difference with an average pH of paddy soils in Chung-Nam with pH 6.1. However, the average of organic matter, calcium (Ca) and available silicate in Sejong was lower than the average of them in Chung-Nam. The yields of rice were higher in 2010 than in 2011 and 2012, and the protein contents of rice were the highest in 2011 while the lowest water contents of rice in 2011. The protein contents upon regions were the highest in 2011 with 6.1%, and the amylose contents were the highest in Yeondong-myun, Jeoneu-myun, and Yeonseo-myun in 2010 while Kumnam-myun and Jeondong-myun were the highest in 2012. With the increase of precipitation, the protein content level in rice was increased while the amylose content level tended to decrease. Correlations between the chemical properties of paddy soil and the quality of rice and between level of organic matter in soil and amylose contents were negative (r = -0.507), and the correlation between the moisture contents and amylose contents (r = 0.419) and between the water contents and whiteness (r = 0.485) were positive. Because the quantity and quality of rice yield is determined by the soil characteristics, the consultation to farmers for the proactive soil analysis and for the maintenance of stable level of pH, organic matter and available silicate based on historical results of analysis is highly recommended. Also, the analysis on the effect of the weather and the soil characteristics affecting the quality and quantity of rice would be another good way.

Decomposition of Rice Straw in Paddy Soil as Affected by Application of Liquid Pig Manure (논토양에서 가축분뇨 액비시용이 볏짚 분해에 미치는 영향)

  • Lee, Sang-Bok;Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Deog-Bae;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.104-108
    • /
    • 2004
  • This study was conducted to investigate the decomposition rates of rice straw in paddy soil with application of liquid pig manure (LPM). Decomposition rate of rice straw was dramatically increased to 52.3% for 60days after LPM application, the rate was higher in soils of tillage than in soils of no-tillage with higher levels of LPM application. C/N ratio in the tice straw was decreased in soils of tillage with higher levels of LPM application. Contents of $NH_4-N$ and $NO_3-N$ in paddy soils were increased with tillage and higher levels of LPM application. The number of cellulose decomposer, and ammonia-oxidizing and denitrifying bacteria in paddy soils at 90 days after LPM application were more than $1.4{\times}10^5$, $2.6{\times}10^2$ and $1.4{\times}10^2cfu\;g^{-1}$ dry soil, respectively, the numbers were higher in soils of tillage with higher levels of LPM application, Soil tillage after LPM application could enhance the decomposition of rice straw in paddy soil.

Establishment of Baseline Emission Factor of Methane in Korean Rice Paddy Soil (국내 벼 논에서 메탄 기본배출계수 개발)

  • Kim, Gun-Yeob;Jeong, Hyun-Cheol;Ju, Ok-Jung;Kim, Hee-Kwon;Park, Jun-Hong;Gwon, Hyo-Suk;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.359-365
    • /
    • 2013
  • BACKGROUND: Methane ($CH_4$) emission is calculated using the default $CH_4$ emission factor as recommended by the International Panel on Climate Change(IPCC guidelines). However, the default emission factor has been derived using including the data from other countries having different soil and environmental conditions and may not reflect the real $CH_4$ emission rates in Korea. The objective of this study was to estimate the baseline emission factor of $CH_4$ in Korean paddy soils during rice cultivation. METHODS AND RESULTS: Methane emission patterns were characterized in four different paddy soils across country for a consecutive 3 years during the rice cultivation period. Rice plants were cultivated under continuous flooding and fertilized using the recommended chemical fertilization in Korea ($N-P_2O_5-K_2O$=90-45-57kg/ha). The mean $CH_4$ emission rate was 2.32 kg $CH_4$/ha/day and the uncertainty of the investigated data was 21.7%, with a valuable error range at 1.82-2.82 kg $CH_4$/ha/day with a 95% confidence interval. CONCLUSION(S): Conclusively, the Korean paddy soils' baseline emission factor of $CH_4$ is approximately 2.32 kg $CH_4$/ha/day and can be used to estimate the $CH_4$ emissions more exactly.

Pollution of Heavy Metals in Paddy Soils Around the Downstream Area of Abandoned Metal Mine and Efficiency of Reversed Soil Method as Its Remediation (폐금속광산 하부 농경지 토양의 중금속오염과 그 복구방법으로서 반전객토의 효율성)

  • Na, Choon-Ki;Lee, Mu-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • In order to investigate the dispersion patterns and contamination level of heavy metals in the soil-ecosystem and to evaluate the efficiency of soil remediation by reversed soil method, soils and plants were collected from the Dongjin Au-Ag-Cu mine area and analysed for heavy metals. The dispersion patterns of heavy metals in soils and plants show that heavy metal pollutions caused by waste rump around Dongjin mine are mainly found in the vicinity of the waste rump and in the southward slanting of mine. Toxic metallic pollutants from the mine influence heavy metal contents in paddy soils in downstream area, and may be a potential sources of heavy metal pollution on crop plants. Soil samples collected from the remediated rice farming field by reversed method show similar levels of heavy metal content to those from the polluted rice farming field, but topsoil enrichment of heavy metals are not found. Heavy metal contents of the rice plants collected from remediated rice farming field are significantly lower than those from polluted rice farming field, and it suggests that the reversed soil method is effective for the reduction of bioavailability of heavy metals.

  • PDF

Effects of Pre-cropping with Rice (Oryza sativa L.) Alternative Crops on Grain Yield and Flour Quality of Winter Wheat (Triticum aestivum L. 'Jokyung') on the Paddy Fields (논에서 벼 대체작물의 전작 재배가 조경밀의 곡물 생산성과 밀가루의 품질에 미치는 영향)

  • Oh, Seo Young;Seo, Jong Ho;Choi, Jisu;Oh, Seong Hwan
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.686-695
    • /
    • 2022
  • The grain yield and flour quality of winter wheat (Triticum aestivum L. 'Jokyung') were investigated in the paddy fields in which the double-cropping of wheat linked to rice (Oryza sativa L.) and its alternative crops [black soybean (Glycine max (L.) Merr.), sesame (Sesamum indicum L.), and perilla (Perilla frutescens (L.) Britton)] was applied. In the soils in which black soybean, sesame, and perilla as pre-crops were cultivated, the soil pH was higher and the electrical conductivity was lower than in the rice pre-cropped soil. In addition, the available phosphate (Av. P2O5), and contents of Ca2+ and Mg2+ were higher than in the rice pre-cropped soil. Winter wheat growth characteristics such as culm length, spike length, number of spikes and grains were generally favorable in the black soybean pre-cropped soil. However, the grain yield of winter wheat increased in the black soybean, sesame, and perilla pre-cropped soils by 100 kg/10a or more than in the rice pre-cropped soil. Furthermore, protein content and SDS-sedimentation value of the flour were higher, while amylose content was slightly lower, in the black soybean, sesame, and perilla pre-cropped soils than in rice pre-cropped soil. These results suggest that cultivation of rice alternative crops such as sesame, black soybean, and perilla as pre-crops in paddy soil could improve the physical and chemical properties of the soil and contribute to producing high-quality wheat flour more advantageous for the baking process.

Heavy Metal(loid) Levels in Paddy Soils and Brown Rice in Korea

  • Kunhikrishnan, Anitha;Go, Woo-Ri;Park, Jin-Hee;Kim, Kwon-Rae;Kim, Hyuck-Soo;Kim, Kye-Hoon;Kim, Won-Il;Cho, Nam-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.515-521
    • /
    • 2015
  • There is an increasing concern over heavy metal(loid) contamination of soil in agricultural areas including paddy soils. This study was conducted to monitor the background levels of heavy metal(loid)s, arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in major rice growing soils and its accumulation in brown rice in Korea. The samples were collected from 82 sites nationwide in the year 2012. The mean and range values of As, Cd, Cu, Hg, Ni, Pb, and Zn in paddy soils were 4.41 (0.16-18.9), 0.25 (0.04-0.82), 13.24 (3.46-27.8), 0.047 (0.01-0.20), 13.60 (3.78-35.0), 21.31 (8.47-36.7), and 54.10 $(19.19-103.0)mg\;kg^{-1}$, respectively. This result indicated that the heavy metal(loid) levels in all sampled paddy soils are within the permissible limits of the Korean Soil Environment Conservation Act. The mean and range values of As, Cd, Cu, Hg, Ni, Pb, and Zn in brown rice were 0.146 (0.04-0.38), 0.024 (0.003-0.141), 4.27 (1.26-16.98), 0.0024 (0.001-0.008), 0.345 (0.04-2.77), 0.113 (0.04-0.197), and 22.64 $(14.1-35.1)mg\;kg^{-1}$, respectively. The mean and range BCF (bioconcentration factor) values of As, Cd, Cu, Hg, Ni, Pb, and Zn in brown rice were 0.101 (0.01-0.91), 0.121 (0.01-0.70), 0.399 (0.05-2.60), 0.061 (0.016-0.180), 0.033 (0.004-0.44), 0.005 (0.003-0.013), and 0.473 (0.19-1.07), respectively, with Zn showing the highest. The results show that the levels of all metal(loid)s in all sampled brown rice are generally within the acceptable limit for human consumption.

Organic Rice (Oryza sativa L.) Production in Eco-friendly Complex using Gelatin·Chitin Microorganisms (친환경 광역단지 내 젤라틴·키틴분해미생물을 이용한 유기 벼 생산)

  • Choi, Seung-Hee;Cha, Kwang-Hong;Seo, Dong-Jun;Park, Hung-Gyu;Kwon, Oh-Do;An, Kyu-Nam;Lee, Jai-Hak;Kim, Kil-Yong;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.629-647
    • /
    • 2018
  • This study was carried out to investigate the economic value of organic rice production using gelatin chitin microorganisms in eco-friendly complex, Gongsan, Naju city. The soil condition of experiment paddy field was Jeonbuk series and silt loam with a slightly poor drainage. Except for the high effective silicate, the chemical characteristics of soils used were included in the optimum range of paddy soils in Korea. In growth, plant length, tiller number, ear number, and ear length were observed to be higher in conventional paddy fields than organic paddy fields. However, number of grain per panicle and grain filling ratio (%) were higher in organic paddy fields than conventional paddy fields. Incidences of diseases and insect pests were slightly higher in the organic paddy fields. Water weevil, sheath blight, rice leaf roller and rice blast were more occurred in organic paddy field. On the other hand, false smut was higher occurred in conventional paddy field. There was a significant negative correlation between rice sheath blight and rice leaf roller, and rice yield. In the milled rice quality, the quality of organically cultivated milled rices was lower by the increase of broken rice than that of conventionally cultivated milled rices. The quality and palatability of rice were higher in organic cultivation with decreasing of protein content. Net income of conventionally and organically cultivated rice was 360,000 won/10a and 610,000 won/10a, respectively. Premium net income of the organically cultivated rice was 68%.

Geochemical Behavior of Metals in the Contaminated Paddy Soils around Siheung and Deokeum Mines through Laboratory Microcosm Experiments (실내 microcosm실험에 의한 시흥광산 및 덕음광산 주변 오염 논토양내 중금속의 지구화학적 거동 연구)

  • 김정현;문희수;안주성;김재곤;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • Seasonal variations in vertical distributions of metals were investigated in the contaminated paddy soils around Siheung Cu-Pb-Zn and Deokeum Au-Ag mines. Geochemical behavior of metals was also evaluated with respect to redox changes during the cultivation of rice. Two microcosms simulating the rice-growing paddy field were set up in the laboratory. The raw paddy soils from two sites showed differences in mineralogy, metal concentrations and gecochemical parameters, and it is suggested that high proportions of exchangeable fractions in metals may give high dissolution rates at Deokeum. In both microcosms of Siheung and Deokeum, redox differences between surface and subsurface of paddy soils were maintained during the flooded period of 18 weeks. Siheung soil had neutral to alkaline pH conditions, while strongly acidic conditions and high Eh values were found at the surface soil of Deokeum. The concentrations of dissolved Fe and Mn were higher in the subsurface pore waters than in interface and upper waters from both microcosms, indicating reductive dissolution under reducing conditions. On the contrary, dissolved Pb and Zn had high concentrations at the surface under oxidizing conditions. From the Siheung microcosm, release of dissolved metals into upper waters was decreased. presumably by the trap effect of Fe- and Mn-rich layers at the interface. However, in the Deokeum microcosm, significant amounts of Pb and Zn were released into upper water despite the relatively lower contents in raw paddy soil, and seasonal variations in the chemical fractionation of metals were observed between flooded and drained conditions. Under acidic conditions, rice may uptake high amounts of metals from the surface of paddy soils during the flooded periods, and increases of exchangeable phases may also increase the bioavailability of heavy metals in the drained conditions.

Effect of Soil Microbial Diversity in Paddy Wetland under Organic Rice-Fish Mixed Farming System (유기농 복합생태 논습지의 토양 미생물 다양성 증진 효과)

  • Han, Yangsoo;Park, Choongbae;Cho, Jung-Lai;Park, Sang-Gu;Kong, Min-Jae;Nam, Hong-Shik;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.69-82
    • /
    • 2022
  • In this study, we investigated the bacterial community structure in organic rice-fish mixed farming paddy soil by using high-throughput sequencing technology. The results showed that compared with the organic rice cultivated soil, the content of AP (available phosphorus) increased by 310.23 % and the content of OM (organic matter) increased by 168.83%. The most abundant phyla in paddy soils were Proteobacteria, Bacteriodetes, and Chloroflexi, whose relative abundance was above 47.83%. Among the dominant genera, the relative abundance of Limisphaera in paddy soils was observed. Alpha diversity indicated that the bacterial diversity of paddy soils was similar among each other. The bacterial community structure was affected by the relative abundance of bacteria, not the species of bacteria. Principal Coordinated Analysis (PCoA) results showed that the bacterial communities in organic rice-fish mixed farming soil and organic paddy soil were correlated to each other; the bacterial community structure was distinctively grouped by four different systems (paddy soil under organic rice-fish mixed farming system, organic rice cultivation, and conventional rice cultivation), where the first two are closely related to each other than the third one. The results provide basal support for organic agri-cultivation while improving an ecological value at the same time.