• 제목/요약/키워드: rice mutants

검색결과 133건 처리시간 0.022초

Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings

  • Goh, Chang-Hyo;Satoh, Kouji;Kikuchi, Shoshi;Kim, Seong-Cheol;Ko, Suk-Min;Kang, Hong-Gyu;Jeon, Jong-Seong;Kim, Cheol-Soo;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • 제4권4호
    • /
    • pp.281-291
    • /
    • 2010
  • The rice CHLH gene encodes the $Mg^{2+}$-chelatase H subunit, which is involved in chlorophyll biosynthesis. Growth of the chlorophyll-deficient oschlh mutant is supported by mitochondrial activity. In this study, we investigated the activity of mitochondrial respiration in the illuminated leaves during oschlh seedling development. Growth of mutant plants was enhanced in the presence of 3% sucrose, which may be used by mitochondria to meet cellular energy requirements. ATP content in these mutants was, however, significantly lowered in light conditions. Low cytosolic levels of NADH in illuminated oschlh mutant leaves further indicated the inhibition of mitochondrial metabolism. This down-regulation was particularly evident for oxidative stressresponsive genes in the mutant under light conditions. Hydrogen peroxide levels were higher in oschlh mutant leaves than in wild-type leaves; this increase was largely caused by the impairment of the expression of the antioxidant genes, such as OsAPXl, OsRACl, and OsAOXc in knockout plants. Moreover, treatment of mesophyll protoplasts with ascorbic acid or catalase recovered ATP content in the mutants. Taken together, these results suggest that the light-mediated inhibition of mitochondrial activity leads to stunted growth of CHLH rice seedlings.

방사선을 이용한 벼 흰잎마름병 저항성 돌연변이 벼 계통의 선발 (Screening of Gamma Radiation-Induced Pathogen Resistance Rice Lines against Xanthomonas oryzae pv. oryzae)

  • 임찬주;이하연;김웅범;아마드 라자;문제선;김동섭;권석윤
    • 방사선산업학회지
    • /
    • 제4권3호
    • /
    • pp.209-213
    • /
    • 2010
  • Bacterial blight is one of the most serious diseases of rice (Oryza sativa L.), and it has been known that Xanthomonas oryzae pv. oryzae (Xoo) causes this disease symptom. To develop resistance rice cultivars against Xoo, 3,000 lines of $M_3$ mutants, which were irradiated with gamma ray, were tested by 'scissor-dip method' primarily, and 191 putative resistant lines were selected. In $M_4$ generation, these lines were screened again with various ways such as measuring of symptom of bacterial blight in leaf, number of tiller, fresh weight, and phenotypic segregation ratio in next generation. Finally, six resistance lines were selected. RT-PCR analysis revealed that these lines displayed high level of R-genes such as Xa21, Pi36, and Pi-ta. These results indicate that mutations by gamma ray cause disruptions of regulatory signal transduction systems of these R-genes. Furthermore, these selected mutants could be useful for the development of rice cultivar resistant to Xoo.

Systemic Infection of Maize, Sorghum, Rice, and Beet Seedlings with Fumonisin-Producing and Nonproducing Fusarium verticillioides Strains

  • Dastjerdi, Raana;Karlovsky, Petr
    • The Plant Pathology Journal
    • /
    • 제31권4호
    • /
    • pp.334-342
    • /
    • 2015
  • Two fumonisin-nonproducing strains of Fusarium verticillioides and their fumonisin producing progenitors were tested for aggressiveness toward maize, sorghum, rice, and beetroot seedlings grown under greenhouse conditions. None of the plants showed obvious disease symptoms after root dip inoculation. Fungal biomass was determined by species-specific real-time PCR. No significant (P = 0.05) differences in systemic colonization were detected between the wild type strains and mutants not producing fumonisins. F. verticillioides was not detected in any of the non-inoculated control plants. The fungus grew from roots to the first two internodes/leaves of maize, rice and beet regardless of fumonisin production. The systemic growth of F. verticillioides in sorghum was limited. The results showed that fumonisin production was not required for the infection of roots of maize, rice and beet by F. verticillioides.

Characteristics of Endosperm Starch of the Rice Mutant Lines Induced by Sodium Azide

  • Shin, Young-Seop;Park, Chlul-Soo;Seo, Yong-Weon;Jeung, Ji-Ung
    • 한국육종학회지
    • /
    • 제41권2호
    • /
    • pp.84-91
    • /
    • 2009
  • Rice consumption per capta, in South Korea, has been decreased dramatically, owing to the changes of living patterns. Because of not only the major energy source of Korean people but also major income source of Korean farmers, diversifying end-use-quality of rice has been demanded. To the context, 'Suweon 472', a high yielding and early mature japonica line and released as 'Namilbyeo' to framers in 2002, was treated with a chemical mutagen, Sodium Azide to find endosperm mutant types. A total of nine endosperm mutat lines, including five waxy, one dull, two floury, and one white core type, were identified from the 3,542 mutatagen treated lines. Amylose contents, iodine reaction, disintegration in alkali solution, gelatinization in urea solution and amylogram properties of those nine endosperm mutant lines were evaluated to address the possibility as new genetic materials for diversifying rice quality of Korean japonica cultivars. All embryo mutants were clearly differentiated from their wild type, 'Suweon 472', in terms of physic-chemical properties evaluated. The endosperm mutant lines would be very useful in expanding untiliztation of rice through opening new rice markets of processed foods from Korean japonica rice.

Physicochemical Properties of Non-glutinous, Dull, and Glutinous Rice Grain in Segregating Populations of Dull/Glutinous Crosses

  • Kim, Kwang-Ho;Kim, Eun-You;Jeong, Young-Pyeong
    • 한국작물학회지
    • /
    • 제44권3호
    • /
    • pp.277-281
    • /
    • 1999
  • Dull grains segregated from F$_3$ and F$_4$ of the crosses between two dull mutants and a glutinous cultivar were compared with non-glutinous and glutinous segregants for their physicochemical properties. Amylose content of dull rice grain segregated from the dull/glutinous cross showed the intermediate value between glutinous and non-glutinous rice grain, whether it is controlled by the recessive or dominant gene. Alkali digestibility value (ADV) of dull rice grain was lower than that of glutinous or non-glutinous rice. A positive correlation was found between ADV and amylose content of homozygous non-glutinous or dull F$_4$ grains, but a negative relationship was observed in glutinous grains. Protein content of dull grain was significantly higher than that of glutinous or non-glutinous grain segregated from the same cross, while those of glutinous and non-glutinous grains were not different. Among gelatinization characteristics, initial pasting temperature and peak viscosity of dull grains were higher than glutinous rice, and were not different with non-glutinous grain. Hot, cool and consistency viscosities of dull grain were intermediate between glutinous and non-glutinous rices. Dull grains showed the highest breakdown viscosity and the lowest setback viscosity among the three endosperm types.

  • PDF

방사선 이용 벼 돌연변이 계통 선발 및 농경 형질조사 (Selection and Agronomic Traits of Radiation-induced Variants in Rice)

  • 이인석;김동섭;이상재;송회섭;임용표;이영일
    • Journal of Plant Biotechnology
    • /
    • 제30권1호
    • /
    • pp.19-25
    • /
    • 2003
  • 본 실험은 방사선 처리에서 유기된 벼 변이계통의 몇 가지 농경 형질 분석 및 RAPD 분석을 통하여 방사선 이용 돌연변이 육종연구를 위한 기초적인 자료를 얻기 위하여 실시하였다. 1. 방사선에 의해 선발된 변이 계통의 초장, 수장 및 내도복성 형질은 모품종과 비교하여 정 (+)및 부 (-)의 방향으로 작용하였다. 2. RAPD 분석에 의해 계통 간 polymorphic band를 관찰할 수 있었고, UPGMA에 의해 변이계통를 4 groups으로 분류할 수 있었다. 3. 변이체들 중 계통 91, 139, 140 및 141은 내염성 형질을 나타냈고, 유리 proline 함량이 모품종보다 유의성 있는 증가를 나타내었다. 4. 139, 140 및 141 계통은 dendrogram에서 같은 그룹을 이루었고 모품종과 가장 먼 유전적 거리를 나타내었다. 5. 이러한 계통들은 육종 및 분자유전 연구에 유용한 재료로 이용될 수 있다.

Phytochromes A and B: Specificity of photoperception and structure/function analysis of bilin chromophores

  • Shinomura, Tomoko;Hanzawa, Hiroko;Furuya, Masaki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.90-93
    • /
    • 2002
  • Phytochrome A (phyA) and phytochrome B (phyB) perceive light and adapt to fluctuating circumstances by different manners in terms of effective wavelengths, required fluence and photoreversibility. Action spectra for induction of seed germination and inhibition of hypocotyl elongation using phytochrome mutants of Arabidopsis showed major difference. PhyA is the principal photoreceptor for the very low fluence responses and the far-red light-induced high irradiance responses, while phyB controls low fluence response in a red/far-red reversible mode. The structural requirement of their bilin chromophores for photosensory specificity of phyA and phyB was investigated by reconstituting holophytochromes through feeding various synthetic bilins to the following chromophore-deficient mutants: hy1, hyl/phyA and hyl/phyB mutants of Arabidopsis. We found that the vinyl side-chain of the D-ring in phytochromobilin interacts with phyA apoprotein. This interaction plays a direct role in mediating the specific photosensory function of phyA. The ethyl side-chain of the D-ring in phycocyanobilin fails to interact with phyA apoprotein, therefore, phyA specific photosensory function is not observed. In contrast, both phytochromobilin and phycocyanobilin interact with phyB apoprotein and induce phyB specific photosensory functions. Structural requirements of the apoproteins and the chromophores for the specific photoperception of phyA and phyB are discussed.

  • PDF

The phosphoinositide-specific phospholipase C gene, MPLCl, of Magnaporthe grisea is required for fungal development and plant colonization

  • Park, Hee-Sool;Lee, Yong-Hwan
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.84.1-84
    • /
    • 2003
  • Magnaporthe grisea, the casual agent of rice blast, forms an appressorium to penetrate its host. Much has been learned about environmental cues and signal transduction pathways, especially those involving CAMP and MAP kinases, on appressorium formation during the last decade. More recently, pharmacological data suggest that calcium/calmodulin-dependent signaling system is involved in its appressorium formation. To determine the role of phosphoinositide-specific phospholipase C (PI-PLC) on appressorium formation, a gene (WPLCl) encoding PI-PLC was cloned and characterized from M. grisea strain 70-15. Sequence analysis showed that MPLCl has alt five conserved domains present in other phospholipase C genes from several filamentous fungi and mammals. Null mutants (mplcl) generated by targeted gene disruption exhibited pleiotropic effects on conidial morphology, appressorium formation, fertility and pathogenicity. mplcl mutants developed nonfunctional appressoria and are also defective in infectious growth in host tissues. Defects in appressorium formation and pathogenicity in mplcl mutants were complemented by a mouse PLCdelta-1 cDNA under the control of the MPLCl promoter. These results suggest that cellular signaling mediated by MPLCl plays crucial and diverse roles in development and pathogenicity of M. grisea, and functional conservation between fungal and mammalian Pl-PLCs.

  • PDF

Insertional mutagenesis of fusarium graminearum for characterization of genes involved in disease development and mycotoxin production

  • Han, Yon-Kyoung;Lee, Hyo-Jin;Yun, Sung-Hwan;Lee, Yin-Won
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.85.2-86
    • /
    • 2003
  • Fusarium graminearum is an important pathogen of cereal crops in many areas of the world causing head blight and ear rot of small grains. In addition to serious economic losses, this fungus produces mycotoxins, such as trichothecenes and zearalenone on diseased crops and has been a potential threat to human and animal health. To massively identify pathogenesis-related genes from F. graminearum, two representative strains (SCKO4 from rice and Z03643 from wheat) were mutagenized using restriction enzyme-mediated integration (REMI). In total, 20,DOD REMI transformants have been collected from the two strains. So far, 63 mutants for several traits involved in disease development such as virulence, mycotoxin production, and sporulation have been selected from 3,000 REMI transformants. Now, selected mutants of interest have being genetically analyzed using a newly developed outcross method (See Jungkwan Lee et al poster). In addition, cloning and characterization of genomic DNA regions flanking the insertional site in the genome of the mutants are in progress.

  • PDF

Genome Shuffling of Mangrove Endophytic Aspergillus luchuensis MERV10 for Improving the Cholesterol-Lowering Agent Lovastatin under Solid State Fermentation

  • El-Gendy, Mervat Morsy Abbas Ahmed;Al-Zahrani, Hind A.A.;El-Bondkly, Ahmed Mohamed Ahmed
    • Mycobiology
    • /
    • 제44권3호
    • /
    • pp.171-179
    • /
    • 2016
  • In the screening of marine mangrove derived fungi for lovastatin productivity, endophytic Aspergillus luchuensis MERV10 exhibited the highest lovastatin productivity (9.5 mg/gds) in solid state fermentation (SSF) using rice bran. Aspergillus luchuensis MERV10 was used as the parental strain in which to induce genetic variabilities after application of different mixtures as well as doses of mutagens followed by three successive rounds of genome shuffling. Four potent mutants, UN6, UN28, NE11, and NE23, with lovastatin productivity equal to 2.0-, 2.11-, 1.95-, and 2.11-fold higher than the parental strain, respectively, were applied for three rounds of genome shuffling as the initial mutants. Four hereditarily stable recombinants (F3/3, F3/7, F3/9, and F3/13) were obtained with lovastatin productivity equal to 50.8, 57.0, 49.7, and 51.0 mg/gds, respectively. Recombinant strain F3/7 yielded 57.0 mg/gds of lovastatin, which is 6-fold and 2.85-fold higher, respectively, than the initial parental strain and the highest mutants UN28 and NE23. It was therefore selected for the optimization of lovastatin production through improvement of SSF parameters. Lovastatin productivity was increased 32-fold through strain improvement methods, including mutations and three successive rounds of genome shuffling followed by optimizing SSF factors.