• Title/Summary/Keyword: rice herbicide

Search Result 337, Processing Time 0.031 seconds

Weeding Effect of Echinochloa oryzoides Resistant to ACCase and ALS Inhibitors by the Leaf Stages (ACCase 및 ALS 저해 제초제 저항성 강피의 엽기별 약제방제효과)

  • Lee, In-Yong;Kwon, Oh-Do;Kim, Chang-Seok;Lee, Jeong-Ran;Shin, Hae-Ryoung;Moon, Byung-Chul;Park, Jae-Eup;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.183-191
    • /
    • 2011
  • Weeding effect was investigated based on the leaf stages to several different herbicide treatments for an integrated weed management of herbicide resistant Echinochloa oryzoides to ACCase and ALS inhibitors in a rice field. Efficacy of soil-applied herbicide treatments before resistant E. oryzoides occurred was very effective. Pentaxazon 5% SC showed over 98% of weeding effect although E. oryzoides were emerged 31 days after the treatment. Until the leaf stage of 2.5, five herbicides, azimsulfuron carfenstole 1.05% GR, bensulfuron-methyl benzobicyclone mefenacet 24.52% SC, bensulfuron-methyl fentrazamide 7% SC, bensulfuron-methyl mefenacet oxadiargyl 21.6% SC and mefenacet pyrazosulfuron-ethyl 3.57% GR showed perfect weeding effect. Benzobicyclone mefenacet penoxulam 21.5% SC and mefenacet pyrazosulfuron-ethyl 3.57% GR were effective at the leaf stage of 3.0. It is very important to select the right herbicides for timing and their systematic application for controlling of E. oryzoides resistant to ACCase- and ALS-inhibitors.

Searching of Possible Target Enzymes for Herbicide Development using Commercial Plant-Specific Inhibitors (식물 특정효소저해제의 생물활성 조사에 의한 신규제초제 작용점 탐색)

  • Hwan, In-Taek;Choi, Jung-Sup;Park, Sang-Hee;Lee, Kwan-Hwi;Lee, Byung-Hoi;Hong, Kyung-Sik;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.36-45
    • /
    • 2001
  • This study was conducted to search new target enzymes of novel herbicide candidate. Total of 107 biochemical inhibitors reported to inhibit over than 100 different plant enzymes were purchased from commercial chemical companies. 15 inhibitors and 34 enzymes were selected by germination assay, seedling assay, wheat leaf disc assay, and whole plant assay. Among them, seven compounds of purine, phehyl-hydrazine, o-phenanthroline, oleylamine, dicyclohexylcarbodiimide, 7,8-benzoquinoline, and aminooxyacetic acid showed high herbicidal activity in the whole plant assay under greenhouse while 7,8-benzoquinone, 8-hydroxyquinoline, 2,2'-dipyridyl, and o-phenanthroline inhibited seed germination of barnyardgrass, rice, and tomato at concentrations of 1.25 to $5{\mu}M$. The compounds of 7,8-benzoquinoline, chlorpromazine, cyanuric fluoride, 4-methylpyrazole, oleylamine, tranylcypromine, and trifluoperazine inhibited the growth of cyanobacteria at 30 to $100{\mu}M$. The compounds of dicyclohexylcarbodiimide and chlorpromazine exhibited whitening effect on tile wheat leaf disc at $100{\mu}M$. These results suggest that the plant-specific enzyme inhibitors which have biological activities may supply the target enzyme for developing new herbicide candidate.

  • PDF

Fact-finding Survey on The Use of Paddy Field Herbicides at Farmer's Level in Gyeongsangbuk-do Province (경상북도 지역 논 제초제의 농가 사용 실태)

  • Kim, Sang-Kuk;Han, Youn-Yul;Shin, Jong-Hee;Kim, Su-Yong;Won, Jong-Gun;Kim, Hak-Yoon
    • Korean Journal of Weed Science
    • /
    • v.32 no.2
    • /
    • pp.127-132
    • /
    • 2012
  • Field survey on the weed occurrence and the use of herbicides was carried out targeting 214 rice cultivating farmers at Gyeongsangbuk-do. 96.2% of farmers did machine planting in late May and this is 68.0% of total cultivating area. Spring plowing was first with 54.6%, followed by spring-fall and fall plowing with 24.8% and 15.0%, respectively. 75% of the farmers treated herbicide twice. 57.5% of them treated herbicide before transplanting and treated at post-emergence again. In case of only application, 84% of the farmers treated herbicide before transplanting. Twenty-three species were occurred at Gyeongsangbuk-do and Echinochloa spp. was the most dominant with 20.8%, Sagittaria trifolia was second with 10.4%, followed by Monochoria vaginalis and Sagittaria pygmaea with 9.9% and 9.7%, respectively. Sagittaria pygmaea was the most difficult to control followed by Echinochloa spp., M. vaginalis, and S. trifolia.

Effects of Protox Herbicide Tolerance Rice Cultivation on Microbial Community in Paddy Soil (Protox 제초제저항성 벼 재배가 토양미생물 군집에 미치는 영향)

  • Oh, Sung-Dug;Ahn, Byung-Ohg;Kim, Min-Kyeong;Sohn, Soo-In;Ryu, Tae-Hun;Cho, Hyun-Suk;Kim, Chang-Gi;Back, Kyoung-Whan;Lee, Kijong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • BACKGROUND: Rice (Oryza sativa) is the most important staple food of over half the world's population. This study was conducted to evaluate the possible impact of transgenic rice cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM rice cultivation soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with GM and non-GM rice were similar to each other, and there was no significant difference between GM and non-GM rice. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM rice were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in GM and non-GM rice cultivated soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed similar patterns, but didn't show significant difference to each other. DNAs were isolated from soils cultivating GM and non-GM rice and analyzed for persistence of inserted gene in the soil by using PCR. The PCR analysis revealed that there were no amplified protox gene in soil DNA. CONCLUSION(S): These data suggest that transgenic rice does not have a significant impact on soil microbial communities, although continued research may be necessary.

Assessment of gene flow from insect-resistant genetically modified rice (Agb0101) to non-GM rice (해충저항성 유전자변형 벼(Agb0101) 유전자 이동성 평가)

  • Oh, Sung-Dug;Yun, Doh-Won;Sohn, Soo-In;Park, Soon Ki;Chang, Ancheol
    • Korean Journal of Breeding Science
    • /
    • v.49 no.3
    • /
    • pp.180-189
    • /
    • 2017
  • Genetically modified (GM) crops have been developed worldwide through the recombinant DNA technology and commercialized by global agricultural companies. Until now, GM crops have not been cultivated commercially in Korea. Commercialization of GM crops requires a compulsory assessment of environmental risk associated with the release of GM crops. This study was conducted to evaluate the frequency of pollen mediated gene flow from Bt transgenic rice (Agb0101) to japonica non-GM rice (Nakdongbyeo), indica non-GM rice (IR36), and weedy rice (R55). A total of 729,917, 596,318 and 230,635 seeds were collected from Nakdongbyeo, IR36, and R55, respectively, which were planted around Agb0101. Selection of the hybrids was determined by repeated spraying of herbicide and Cry1Ac1 immunostrip assay. Finally, the hybrids were confirmed by PCR analysis using specific primer. The hybrids were found in all non-GM rice and out-crossing ranged from 0.0005% at IR36 to 0.0027% at Nakdongbyeo. All of hybrids were located within 1.2 m distance from the Agb0101 rice plot. The meteorological elements including rainfall and temperature during rice flowering time were found to be important factors to determine rice out-crossing rate. Consideration should be taken for many factors like the meteorological elements of field and physiological condition of crop to set up the safety management guideline to prevention of GM crops gene flow.

Herbicidal Property and Soil Behavior of a New Herbicide, Azimsulfuron (신제초제(新除草劑) Azimsulfuron의 제초활성(除草活性)과 토양중(土壤中) 행동(行動))

  • Chun, J.C.;Ma, S.Y.
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.501-505
    • /
    • 1996
  • Azimsulfuron [1H-pyrazole-5-sulfonamide,N-(((4,6-dimethoxy-pyridine-2-yl-aminocarbonyl-4-(2-methyl-2H-tetrazole-5-yl)] is a new sulfonamide herbicide that selectively controls a wide range of weeds in lowland rice (Oryza sativa). It effectively controlled Cyperus serotinus, Eleocharis kuroguwai, Sagittaria pygmaea, S. trifolia, and Scirpus juncoides at 7.5 - 30 g ai/ha. In the tolerance test on grasses carried out in a nutrient solution containing 0.3 - 30 ppm of azimsulfuron, greater inhibition occurred in roots of both rice and barnyardgrass (Echinochloa crus galli) than in shoots. However, rice root was approximately 5-fold more tolerant than that of barnyardgrass. The downward movements as determined by 50% growth inhibition of S. juncoides were 4-cm in clay loam and 6.5-cm in sandy loam soil with 3-cm/day leaching for 3 days. When incubated at 20 and $30^{\circ}C$, the residual effect in clay loam soil lasted for 30 and 21 days, respectively. In a soil column applied at 15 g ai/ha of azimsulfuron followed by 3-cm/day leaching for 3 days, dry weights of S. trifolia emerging at 5, 10, and 15-cm depth were reduced to 87, 85, and 79% of the corresponding untreated control, respectively. Susceptibility of S. trifolia to azimsulfuron did not greatly vary with the emergence depth.

  • PDF

Tolerance of Rice(Oryza sativa L.) Genotypes to Herbicide Thiobencarb (벼 품종(品種)의 제초제(除草劑) Thiobencarb에 대한 내성(耐性) 검정(檢定))

  • Shin, Seo-Ho;Lee, Young-Man
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.176-184
    • /
    • 1997
  • The rice(Oryza saliva L.) tolerance to herbicide thiobencarb was determined. At the concentration of thiobencarb 3.0kg ai/ha, Yamabiko, M73 (23)F.A, and wx 139-3-64-220-3-1 were the most tolerant among 643 rice genotypes tested. Thiobencarb reduced plant height until 14 days after treatment by 10% and 13% in tolerant and susceptible genotypes, respectively, but increased plant height in 21 days after treatment for both the genotypes, though partial stunting or dwarfing was observed during the early period until 14 days after treatment. Number of tillers per plant was greater in the plants treated by thiobencarb than in the control, showing that the tolerant genotypes had 2 to 3 tillers which were more than the susceptible ones. Regardless of the genotypes, shoot dry weight was increased by 30 to 50% in 35 days after thiobencarb treatment. The root dry weight increased by 50 to 100% in 35 days after the treatment.

  • PDF

Movement of Herbicide Pretilachlor in Plants and Soils (식물체(植物體) 및 토양중(土壤中)에 있어서 제초제(際草劑) Pretilachlor의 이동특성(移動特性))

  • Ma, Sang-Yong;Moon, Young-Hee;Ryang, Hwan-Seong
    • Applied Biological Chemistry
    • /
    • v.30 no.4
    • /
    • pp.351-356
    • /
    • 1987
  • This study was conducted to investigate the absorption and translocation of pretilachlor [2-chloro-2, 6-diethyl-N-(n-propoxyethyl)-acetanilide] in plants and to evaluate the mobility in soil using the $^{14}C-or$ non-labelled compound in laboratory. Rice plant(Oryza sativa L.) was very tolerant to pretilachlor. Echinochloa crus-galli P. Beauv. was completely controlled by pretilachlor at 60g a.i./10a. At the 120g a.i./l0a, growth of Cyperus serotinus Rottb. and Sagittaria pygmaea Miq. was inhibited by 75% and 25%, respectively. The growth inhibition depended on absorbed amount of $^{14}C-pretilachlor$. The greatest concentration of $^{14}C$ was found in E. crus-galli, whereas the lowest was determined in rice plant. The rate of absorption and translocation in E. curs-galli was faster than in rice plan. Pretilachlor moved to 6cm deep in sandy clay loam, clay loam and loam soils, but to 10cm in sandy loam soil. In the soils herbicide-treated layer was found 0 to 2cm profile.

  • PDF

Pesticide Residue Monitoring and Environmental Exposure in Paddy Field Soils and Greenhouse Soils (전국 논토양과 시설하우스 토양 중 잔류농약 모니터링과 환경 노출성)

  • Park, Byung-Jun;Lee, Ji-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.134-139
    • /
    • 2011
  • To investigate an amount of pesticide residue in rice paddy field soils and greenhouse soil, this monitoring was carried out pesticide detection frequency and concentrations collected samples from 150 rice paddy field soils and 152 greenhouse soils of nationwide in the year of 2007, and 2008, respectively. The detection limit of pesticides of this experiment were ranged 0.001~0.005 ppm. In 2007, One hundred fifty samples were collected from rice paddy field soils in April and monitored for 120 wide-used pesticides. A total of 11 pesticides were detected four fungicides, four insecticides and three herbicides in paddy field soils. The highest concentration levels of pesticide detected were 0.84 ppm as herbicide oxadiazon, 0.81 ppm as fungicide isoprothiolane and 0.50 ppm as insecticide buprofezin. The detection frequencies range were 0~19.3%, and the frequency was 2.7% as isoprothiolane and 19.3% as oxadiazon in paddy field soils. In 2008, One hundred fifty two samples were collected from greenhouse soils in April and monitored for 120 wide-used pesticides. A total of 29 pesticides were detected six fungicides, sixteen insecticides and seven herbicides in greenhouse soils. high concentration levels of pesticide detected levels were 5.09 ppm as insecticide chlorfenapyr, 2.57 ppm as fungicide chlorothalonil and 0.72 ppm as herbicide oxadiazon. The detection frequencies range were 0~38.8%, and high frequencies were 38.8% as insecticide endosulfan, 13.2% as oxadiazone, 10.5% as fungicide hexaconazole and 7.2% as isoprothiolane in greenhouse soils, Total endosulfan and oxadiazon were showed high detection frequency of 38.8% and 13.2%, respectively.

Effect of Fertilization and Yearly Application of Identical Herbicides on Weed Succession and Yields of Rice (시비조건과 제초제의 연용이 잡초군락의 변화와 수도의 수량에 미치는 영향)

  • 이종영;박석홍;변종영
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.4
    • /
    • pp.287-292
    • /
    • 1981
  • The field studies were carried out in paddy field over a four year period in order to find out the effects of butachlor, nitrofen, oxadiazon or CG 102, benthiocarb-S, and bentazon applied successively to the same paddy field for four years on weed succession and rice yields under different fertilized conditions including compost, chemical fertilizer and straw application. Total dry weight of weeds was steadily increased yearly over 4 year period regardless of fertilized conditions, and significantly higher increase of weed dry weight was observed on non-fertilized and compost plots. The most dominant weed species was Scirpus hotarui, and Potamogeton distinctus, Eleocharis kuroguwai and Cyperus serotinus were predominated on compost plot, E. kuroguwai and E. aclularis on non-fertilized plot, E. kuroguwai, C. serotinus, and Monochoria vaginalis on chemical fertifizer plot, and C. serotinus on straw plot. When the same herbicides were used continuously on the same plots, weed control effect was decreased and thus weed population was greatly increased particularly on butachlor and nitrofen treated plots. P. distinctus, E. kuroguwai, and C. serotinus were predominated on butachlor treated plot, P. distinctus and C. serotinus on nitrofen treated plot, C. serotinus on benthiocarb-S treated plot, C. serotinus and P. distinctus on oxadiazon or CG 102 treated plot and P. distinctus on bentazon treated plot. Annual weeds were slightly increased by repeated annual application of oxadiazon or CG 102 and benthiocarb-S, whereas perennial weeds were predominated by successive application of butachlor, nitrofen. and bentazon for 4 years. Yield reduction of rice became prominent by successive application of same herbicides. particularly butachlor and nitrafen. This results suggested that successive annual application of same herbicides should be limited and herbicide combination or herbicide rotation should be applied to control the remaining weed species.

  • PDF