• 제목/요약/키워드: rice germplasm

검색결과 98건 처리시간 0.028초

Fast systemic evaluation of amylose and protein contents in collected rice landraces germplasm using near-infrared reflectance spectroscopy(NIRS)

  • Oh, Sejong;Lee, Myung Chul;Choi, Yu Mi;Lee, Sukyeung;Rauf, Muhammad;Chae, Byungsoo;Hyun, Do Yoon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.70-70
    • /
    • 2017
  • This study was conducted to characterize the amylose and protein contents of 4,948 rice landrace germplasm using the NIRS model developed in the previous study. The amylose contents estimated by NIRS in the standard rice were Sinseonchal (6.881%) 4.994%, Chucheong (19.731%) 18.633%, Goami (23.246%) 20.548%. Protein contents were Sinseonchal (6.890%) 6.824%, Chucheong (6.350%) 6.869%, Goami (6.777%) 7.839%. The NIRS analysis showed that 1.1-2.7%point lower in amylose and 0.4-0.6%point higher in protein than standard contents. The average amylose content of the germplasm was 20.39% with a range of 3.97-37.13%. The average protein content was 8.17% with a range of 5.20-17.45%. Amylose contents with a range of 20.06-27.02% represented 62.20% of the germplasm. Protein contents with a range of 6.78-9.75% represented 81.60% of the germplasm. Korean landrace comprised 24.9% among the 4,948 germplasm collected from 41 countries. A specific range of amylose contents showed in Korea 16.58-20.06%, in Japan 20.06-23.25%, in North Korea 23.25-27.02% and in China 27.02-37.13%. Protein contents exhibited 5.20-17.45% evenly in the whole landraces, whereas Chinese landrace particularly observed with 6.78-8.27% and 9.75-17.45%. Fifty resources were selected with low and high amylose ranging from 3.97-6.66% to 30.41-37.13% respectively. Similarly fifty resources were selected with low and high protein ranging from 5.20-6.09% to 13.21-17.45% respectively. Landraces with higher protein should be adapted to practical utilization of food sources.

  • PDF

Screening of Resistance Genes Linked to Brown Planthopper Using STS Marker in Aromatic Rice Germplasm

  • Kim, Jeong-Soon;Ahn, Sang-Nag;Hong, Sung-Jun;Park, Jong-Ho;Lee, Min-Ho;Han, Eun-Jung;Damodaran, P.N.;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki
    • 한국작물학회지
    • /
    • 제56권2호
    • /
    • pp.167-176
    • /
    • 2011
  • Brown planthopper (BPH) is a serious insect pest of rice crop throughout rice growing countries, and yield loss due to its infection can be up to 60%. This study aimed to evaluate efficiency of molecular markers for screening BPH resistance accessions among 86 aromatic rice germplasm Eighty-six accessions of aromatic rice germplasm included two accessions of Tongil type (bred in Korea), 28 accessions of japonica type and 56 accessions of indica type. We applied eight STS markers (pBPH9, pBPH19, pBPH20, pBPH21, AJ09-b, RG457L, RG457B, and 7312.T4A) which were linked to four of BPH resistance genes, Bph1, Bph13(t), Bph10, and Bph18(t) respectively. One japonica type accession, 415XIr352, and six indica type accessions possessed one or four positive bands when tested with four STS markers linked to Bph1 gene. One indica type aromatic rice, Basmati9-93, showed the target bands linked to the Bph10 gene. The other accessions did not show same fragments as the respective resistant lines. Bph13(t) is the most widely introduced resistance gene and only one accession showed positive bands implying that this accession might harbor Bph10 and Bph18(t) genes. Three aromatic accessions, Domsiah, Khao Dawk Mali 105 and 415XIr352 showed gene pyramiding of Bph1 and Bph13(t). Two indica aromatic rice, Ds 20 and Basmati 9-93, possessed at least two BPH resistance genes, Bph1, Bph18(t) and Bph13(t), Bph18(t), respectively. These results indicates that aromatic rice germplasm have narrow diversities of BPR resistance genes.

종자은행 보존 벼 유전자원의 생태형별 종자수명 (Seed Longevity of Rice Germplasm in the National Agrobiodiversity Center)

  • 나영왕;최유미;백형진;이석영;강정훈;김석현
    • 한국작물학회지
    • /
    • 제59권3호
    • /
    • pp.216-222
    • /
    • 2014
  • 농업유전자원의 효율적인 활력 모니터링을 위해 벼의 종자수명을 밝히고자 농촌진흥청 농업유전자원센터에 보존중인 3,066점의 발아율을 조사하였다. 조사 대상인 벼 종자는 $4^{\circ}C$, 상대습도 30%의 저장고에 플라스틱병에 보관한 것과 $-18^{\circ}C$, 상대습도 35%의 저장고에 양철캔에 담아 진공포장하여 25년 이상 보존해 온 것이다. 서로 다른 저장 조건에서 보관 된 벼의 생태형별 저장기간에 따른 발아율 분석으로 종자수명을 계산한 결과는 다음과 같다. 저장 초기 평균 종자수분함량이 $6.5{\pm}1.0%$이고 발아율이 94%였던 벼 유전자원을 $4^{\circ}C$ 저장고에 26.5년 보존 후 발아율은 47%로 저하된 반면, $-18^{\circ}C$ 저장고에 25년 보존된 것은 발아율 93%로 높은 활력을 유지하고 있었다. $4^{\circ}C$ 저장고에 보관된 벼 유전자원의 생태형별 종자수명($P_{50}$)은 인디카형 39.9년, 통일형 31.8년, 자바니카형 25.4년, 자포니카형 22.9년으로 나타났다. 벼 유전자원의 최종 발아율을 사분위수로 4개의 분류군으로 나누어 종자수명을 예측한바 I군은 21.1년, II군은 23.6년, III군은 30년, IV군은 75.7년으로 나타나 자원의 특성에 따라 50년 이상의 저장력 차이가 있음을 알 수 있었다.

Genetic Diversity and Population Structure of a Korean Rice Germplasm Based on DNA Profiles

  • Lee, Kyung Jun;Lee, Jung-Ro;Shin, Myoung-Jae;Cho, Gyu-Taek;Ma, Kyung-Ho;Lee, Gi-An;Chung, Jong-Wook
    • 한국작물학회지
    • /
    • 제63권1호
    • /
    • pp.1-7
    • /
    • 2018
  • Information on the patterns of genetic diversity and population structure is essential for the rational use and efficient management of germplasms; accurate information aids in monitoring germplasms, and can also be used to predict potential genetic gains. In this study, we assessed genetic diversity, focusing on Korean rice accessions for theand their sustainable conserved diversity. Using DNA profiling with 12 simple sequence repeat (SSR) markers, we detected a total of 333 alleles among 2,016 accessions. The number of alleles ranged from 21 to 53, with an average of 27.8. Average polymorphism information content was 0.797, with the lowest being 0.667 and the highest 0.940. CA cluster analysis and the model-based population structure revealed two main groups that could be subdivided into five subgroups. Analysis of the molecular variance study based on the SSR profile data showed 5% variance among the profiles, whereas we recorded 93% variance among individuals and 2% variance within individuals. Specifically, the utilized diversity for of the breeding program is restricted in that cultivars were located in limited clades. These results revealed that preserving the diversity of Korean landraces could be useful sources for breeding new rice cultivars, and cwould be the basis for the sustainable conservation and utilization of a Korean rice germplasm.

Comparison of Grain Quality Traits between Japonica Rice Cultivars from Korea and Yunnan Province of China

  • Yu, Teng-Qiong;Jiang, Wenzhu;Ham, Tae-Ho;Chu, Sang-Ho;Lestari, Puji;Lee, Jeong-Heui;Kim, Myeong-Ki;Xu, Fu-Rong;Han, Longzhi;Dai, Lu-Yuan;Koh, Hee-Jong
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권2호
    • /
    • pp.135-140
    • /
    • 2008
  • Improving eating quality is one of the most important objectives in japonica rice breeding programs in Yunnan Province of China. Eating quality and its relevant traits of nine Korean and 11 Yunnan rice cultivars were comparatively analyzed in this study. The grain shape of most Yunnan japonica rice cultivars have a relatively slender shape and are slightly larger than Korean rice cultivars. Palatability value of cooked rice of Yunnan rice cultivars was significantly lower, while the protein content of Yunnan rice cultivars was significantly higher than that of Korean cultivars. Peak viscosity and breakdown viscosity of the Yunnan rice cultivars were significantly lower, while setback viscosity of the Yunnan rice cultivars was significantly higher than in Korean rice cultivars. Palatability value of cooked rice was negatively correlated with protein content and setback viscosity but positively correlated with peak viscosity, breakdown viscosity, and cool paste viscosity. Through multiple linear regression analysis, an equation for estimating palatability value(PV) of cooked rice based on quality traits was generated as dependent only upon protein content(PC), PV=139.024-(10.865$\times$PC) with an $R^2$ value of 0.822. The results suggest that reducing protein contents should be the major target in improving eating quality of Yunnan japonica rice cultivars through integrated approaches of both cultivar development and appropriate cultural practices. Genetic similarities among cultivars based on DNA markers which had been identified as associated with grain quality seemed not to be directly related to PV.

  • PDF

Development of high yield rice of long grain type adaptable to South-East Asia tropical region

  • Cho, YC;Baek, MK;Park, HS;Nam, JK;Jeong, JM;Kim, WJ;Shin, WC;Song, YC;Cho, JH;Lee, JY;Kim, CS;Park, HG;Kim, BK
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.339-339
    • /
    • 2017
  • The long grain rice varieties adaptable to South-east Asia tropical regions were tried to develop in Cambodian Agriculture Research and Development Institute (CARDI), Cambodia. The final goal is to develop rice varieties which can culture in diverse environmental conditions of tropical regions of South-east Asia under climate change. We collected and evaluated for agronomic traits of 131 rice germplasm from Cambodia, China, India, Indonesia, Myanmar, Philippines and Vietnam in CARDI. We selected core germplasm including leading varieties of target countries and made 813 F1 cross combinations between leading varieties of each country and promising germplasm of high yield potential, resistance to biotic/abiotic stresses, aromatic rice, and so on. Out of 607 F1s evaluated to heading date, plant type, agronomic traits, and grain type, 106 F1s selected and advanced to F2 populations. 106 F2 populations were evaluated to major agronomic traits, grain type and yield-component traits, and selected 2,560 plants in 62 F2 populations. During six seasons in 2014~2016, the lines of F3 subsequent-generation were cultured a total of 6,256 lines. In yield trial for promising lines in F5 generation, the growth duration from sowing to harvesting was 97~114 days. These lines were 88~129 in number of grain per panicle, an average of 84.6% in the range of 79.3~91.9% in the percentage of ripened grain and 17.5~22.8g in 1000-brown rice weight. The rough rice yields were in the range of 4.33~6.06 ton/ha with an average of 5.23 ton/ha. The yield was increased to 5~47% than Chulsa and 12~41% than IR66. Five lines, KR54-28-1, KR55-14-2, KR57-5-2, KR67-57-2 and KR128-19-1 were 5.33~6.06 ton/ha in rough rice yield. These high yield potential lines would be evaluated to adaptability in Cambodia, Laos, Myanmar and Vietnam during 2017.

  • PDF

Development of high yield rice of long grain type adaptable to South-East Asia tropical region

  • Cho, YC;Baek, MK;Park, HS;Nam, JK;Jeong, JM;Kim, WJ;Shin, WC;Song, YC;Cho, JH;Lee, JY;Kim, CS;Park, HG;Kim, BK
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.155-155
    • /
    • 2017
  • The long grain rice varieties adaptable to South-east Asia tropical regions were tried to develop in Cambodian Agriculture Research and Development Institute (CARDI), Cambodia. The final goal is to develop rice varieties which can culture in diverse environmental conditions of tropical regions of South-east Asia under climate change. We collected and evaluated for agronomic traits of 131 rice germplasm from Cambodia, China, India, Indonesia, Myanmar, Philippines and Vietnam in CARDI. We selected core germplasm including leading varieties of target countries and made 813 F1 cross combinations between leading varieties of each country and promising germplasm of high yield potential, resistance to biotic/abiotic stresses, aromatic rice, and so on. Out of 607 F1s evaluated to heading date, plant type, agronomic traits, and grain type, 106 F1s selected and advanced to F2 populations. 106 F2 populations were evaluated to major agronomic traits, grain type and yield-component traits, and selected 2,560 plants in 62 F2 populations. During six seasons in 2014~2016, the lines of F3 subsequent-generation were cultured a total of 6,256 lines. In yield trial for promising lines in F5 generation, the growth duration from sowing to harvesting was 97~114 days. These lines were 88~129 in number of grain per panicle, an average of 84.6% in the range of 79.3~91.9% in the percentage of ripened grain and 17.5~22.8g in 1000-brown rice weight. The rough rice yields were in the range of 4.33~6.06 ton/ha with an average of 5.23 ton/ha. The yield was increased to 5~47% than Chulsa and 12~41% than IR66. Five lines, KR54-28-1, KR55-14-2, KR57-5-2, KR67-57-2 and KR128-19-1 were 5.33~6.06 ton/ha in rough rice yield. These high yield potential lines would be evaluated to adaptability in Cambodia, Laos, Myanmar and Vietnam during 2017.

  • PDF

Screening of the Dominant Rice Blast Resistance Genes with PCR-based SNP and CAPS Marker in Aromatic Rice Germplasm

  • Kim, Jeong-Soon;Ahn, Sang-Nag;Hong, Sung-Jun;Kwon, Jin-Hyeuk;Kim, Yeong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki
    • 한국작물학회지
    • /
    • 제56권4호
    • /
    • pp.329-341
    • /
    • 2011
  • The objective of this study was to determine the genetic diversities of major rice blast resistance genes among 84 accessions of aromatic rice germplasm. Eighty four accessions were characterized by a dominant 11 set of PCR-based SNP and CAPS marker, which showed the broad spectrum resistance and closest linkage to seven major rice blast resistance (R) genes, Pia, Pib, Pii, Pi5 (Pi3), Pita (Pita-2), and Pi9 (t). The allele specific PCR markers assay genotype of SCAR and STS markers was applied to estimate the presence or absence of PCR amplicons detected with a pair of PCR markers. One indica accession, Basmati (IT211194), showed the positive amplicons of five major rice blast resistance genes, Pia, Pi5 (Pi3), Pib, Pi-ta (Pi-ta2), and Pik-5 (Pish). Among 48 accessions of the PCR amplicons detected with yca72 marker, only five accessions were identified to Pia gene on chromosome 11. The Pib gene was estimated with the NSb marker and was detected in 65 of 84 accessions. This study showed that nine of 84 accessions contained the Pii gene and owned Pi5 (Pi3) in 42 of 84 accessions by JJ817 and JJ113-T markers, which is coclosest with Pii on chromosome 9. Only six accessions were detected two alleles of the Pita or Pita-2 genes. Three of accessions were identified as the Pi9 (t) gene locus.