DOI QR코드

DOI QR Code

Seed Longevity of Rice Germplasm in the National Agrobiodiversity Center

종자은행 보존 벼 유전자원의 생태형별 종자수명

  • Na, Young-Wang (Research Policy Bureau, Rural Development Administration) ;
  • Choi, Yu-Mi (National Academy of Agricultural Science, Rural Development Administration) ;
  • Baek, Hyung-Jin (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Sok-Young (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kang, Jung-Hun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Seok-Hyeon (College of Agriculture and Life Sciences, Gyeongsang National University)
  • 나영왕 (농촌진흥청 연구정책국) ;
  • 최유미 (농촌진흥청 국립농업과학원) ;
  • 백형진 (농촌진흥청 국립농업과학원) ;
  • 이석영 (농촌진흥청 국립농업과학원) ;
  • 강정훈 (농촌진흥청 국립농업과학원) ;
  • 김석현 (경상대학교 농업생명과학대학)
  • Received : 2014.05.28
  • Accepted : 2014.07.29
  • Published : 2014.09.30

Abstract

The purpose of this study was to know the seed longevity of rice (Oryza sativa L.) germplasm for effective viability monitoring. The longevity was determined via germination tests of 3,066 accessions of rice germplasm from the National Agrobiodiversity Center, Rural Development Administration, Korea. The rice germplasm accessions have been conserved at a mid-term storage ($4^{\circ}C$, 30% RH) in plastic bottle containing dehydrated (blue) silica-gel and long-term storage ($-18^{\circ}C$, 35% RH) in hermetically sealed metal can on either sides for 25~26.5 years. The final germination percentages of 3,066 rice germplasm accessions of $6.5{\pm}1.0%$ seed moisture content with 94% initial germination stored at $4^{\circ}C$ for 26.5 years declined to 47% while at $-18^{\circ}C$ for 25 years maintained high germinability as 93%. Germination time courses, which represent the average performance of rice ecotypes stored at $4^{\circ}C$ and 30% RH, were fitted regression equation, to calculate the time at which germination characteristically declined to 50% ($P_{50}$). These $P_{50}$ values of Indica, Japonica, Javanica and Tongil type in rice were 39.9, 22.9, 25.4 and 31.8 years, respectively. The rice germplasm stored at $4^{\circ}C$ could be clustered in 4 groups using quartile of final germination after 26.5 years storage. The seed longevity ($P_{50}$) of each group was estimated by regression equation of changed germination percentages according to storage periods. The $P_{50}$ values of group I, group II, group III and group IV were 21.1, 23.6, 30.0 and 75.7 years.

농업유전자원의 효율적인 활력 모니터링을 위해 벼의 종자수명을 밝히고자 농촌진흥청 농업유전자원센터에 보존중인 3,066점의 발아율을 조사하였다. 조사 대상인 벼 종자는 $4^{\circ}C$, 상대습도 30%의 저장고에 플라스틱병에 보관한 것과 $-18^{\circ}C$, 상대습도 35%의 저장고에 양철캔에 담아 진공포장하여 25년 이상 보존해 온 것이다. 서로 다른 저장 조건에서 보관 된 벼의 생태형별 저장기간에 따른 발아율 분석으로 종자수명을 계산한 결과는 다음과 같다. 저장 초기 평균 종자수분함량이 $6.5{\pm}1.0%$이고 발아율이 94%였던 벼 유전자원을 $4^{\circ}C$ 저장고에 26.5년 보존 후 발아율은 47%로 저하된 반면, $-18^{\circ}C$ 저장고에 25년 보존된 것은 발아율 93%로 높은 활력을 유지하고 있었다. $4^{\circ}C$ 저장고에 보관된 벼 유전자원의 생태형별 종자수명($P_{50}$)은 인디카형 39.9년, 통일형 31.8년, 자바니카형 25.4년, 자포니카형 22.9년으로 나타났다. 벼 유전자원의 최종 발아율을 사분위수로 4개의 분류군으로 나누어 종자수명을 예측한바 I군은 21.1년, II군은 23.6년, III군은 30년, IV군은 75.7년으로 나타나 자원의 특성에 따라 50년 이상의 저장력 차이가 있음을 알 수 있었다.

Keywords

References

  1. Chang, T. T. 1991. Findings from a 28-yr seed viability experiment. International Rice Research Newsletter 16:5-6.
  2. Crop Experiment Station, O.R.D. 1984. Catalog of Rice Cultivars and Breeding Lines (Oryza sativa L.) Collected by ORD, Korea (Part 2).
  3. Ellis, R. H. 1988. The viability equation, seed viability nomographs, and practical advice on seed storage. Seed Sci. & Technol. 16 : 29-50.
  4. Ellis, R. H., T. D. Hong, and E. H. Roberts. 1992. The low-moisture-content limit to the negative logarithmic relation between seed longevity and moisture content in three subspecies of rice. Ann. Bot. 69 : 53-58.
  5. FAO, 1998. The State of the World's Plant Genetic Resources for Food and Agriculture. FAO, Rome, Italy. p. 98.
  6. Haferkamp, M. E., L. Smith, and R. A. Nilan. 1953. Studies on aged seeds. I. Relation of age of seed to germination and longevity. Agron. J. 45 : 434-437. https://doi.org/10.2134/agronj1953.00021962004500090009x
  7. Harrington, J. F. 1960. Germination of seeds from carrot, lettuce and pepper plants grown under severe nutrient deficiencies. Hilgardia. 30(1) : 219-235 https://doi.org/10.3733/hilg.v30n07p219
  8. Harrington, J. F. 1973. Biochemical basis of seed longevity. Seed Sci. & Technol. 1 : 453-461.
  9. ISTA. 2007. International Rules for Seed Testing. Edition 2007. International Seed Testing Association.
  10. Justice, O. L. and L. N. Bass. 1978. Principles and Practices of Seed Storage. USDA Handbook 506. U.S. Department of Agriculture. Washington. DC. USA.
  11. Lee, S. Y., J. H. Ahn, H. J. Kim, and M. Y. Eun. 2006. Relationships among viviparous germination, dry-heat tolerance and seed longevity in Milyang 23/Gihobyeo RILs. J. of Bio-Environment Control. 15(4) : 421-427.
  12. Microsoft. 2010. Microsoft Excel 2010.
  13. Minor, H. C. and E. H. Paschal, 1982. Variation in storability of soybeans under simulated tropical conditions. Seed Sci. & Technol. 10 : 131-139.
  14. Rao, N. K. and M. T. Jackson. 1996. Seed longevity of rice cultivars and strategies for their conservation in genebanks. Ann. Bot. 77(3) : 251-260. https://doi.org/10.1006/anbo.1996.0029
  15. Walters, C., L. M. Wheeler, and J. M. Grotenhuis. 2005. Longevity of seeds stored in a genebank: species characteristics. Seed Science Research 15 : 1-20. https://doi.org/10.1079/SSR2004195
  16. Wien, H. C. and E. A. Kueneman. 1981. Soybean seed deterioration in the tropics. II. Varietal differences and techniques for screening. Field Crops Research 4(2) : 123-132. https://doi.org/10.1016/0378-4290(81)90062-9

Cited by

  1. Dry-heat Treatment Effect for Seed Longevity Prediction in Rice Germplasm vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.230