• Title/Summary/Keyword: ribonuclease

Search Result 56, Processing Time 0.024 seconds

Proteomic analysis of Korean ginseng(Panax ginseng C. A. Meyer) following exposure to salt stress

  • Kim, Sun-Tae;Bae, Dong-Won;Lee, Kyung-Hee;Hwang, Jung-Eun;Bang, Kyong-Hwan;Kim, Young-Chang;Kim, Ok-Tae;Yoo, Nam-Hee;Kang, Kyu-Young;Hyun, Dong-Yun;Lim, Chae-Oh
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2008
  • We evaluated the response to salt stress of two different ginseng lines, STG3134 and STG3159, which are sensitive and tolerant, respectively, to salt treatment. Plants were exposed to a 5 dS/m salt solution, and chlorophyll fluorescence was measured. STG3134 ginseng was more sensitive than STG3159 to salt stress. To characterize the cellular response to salt stress in the two different lines, changes in protein expression were investigated using a proteomic approach. Total protein was extracted from detached salt-treated leaves of STG3134 and STG3159 ginseng, and then separated by two-dimensional polyacrylamide gel electrophoresis(2-DE). Approximately 468 protein spots were detected by 2-DE and Coommassie brilliant blue staining. Twenty-two proteins were found to be reproducibly up- or down-regulated in response to salt stress. Among these proteins, twelve were identified using MALDI-TOF MS and ESI-Q-TOF and classified into several functional groups: photosynthesis-related proteins(oxygen-evolving enhancer proteins 1 and 2, rubisco and rubisco activase), detoxification proteins(polyphenol oxidase) and defense proteins($\beta$-1,3-glucanase, ribonuclease-like storage protein, and isoflavone reductase-like protein). The protein levels of ribonuclease-like storage protein, which was highly induced in STG3159 ginseng as compared to STG3134, correlated tightly with mRNA transcript levels, as assessed by reverse-transcription(RT)-PCR. Our results indicate that salinity induces changes in the expression levels of specific proteins in the leaves of ginseng plants. These changes may, in turn, playa role in plant adaptation to saline conditions.

Development of Proteomics-based Biomarkers for 4 Korean Cultivars of Sorghum Seeds (Sorghum bicolor (L.) Moench) (국내 수수 종자 분석을 위한 프로테오믹스-기반 바이오마커 개발)

  • Kim, Jin Yeong;Lee, Su Ji;Ha, Tae Joung;Park, Ki Do;Lee, Byung Won;Kim, Sang Gon;Kim, Yong Chul;Choi, In Soo;Kim, Sun Tae
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.48-54
    • /
    • 2013
  • BACKGROUND: Sorghum (Sorghum bicolor (L.) Moench) ranks as the 6th most planted crop in the world behind wheat, rice, maize, soybean, and barley. The objective of this study was to identify bio-marker among sorghum cultivars using proteomics approach such as two-dimensional polyacrylamide gel electrophoresis (2-DE) coupled with mass spectrometry (MS). METHODS AND RESULTS: Proteins were extracted from sorghum seed, and separated by 2-DE. Total 652 spots were detected from 4 different sorghum seed after staining of 2-DE with colloidal Coomassie brilliant blue (CBB). Among them, 8 spots were differentially expressed and were identified using MALDI-TOF/TOF mass spectrometry. They were involved in RNA metabolism (spot1, spot 4), heat shock proteins (HSPs, spot 2), storage proteins (spot 3, spot 5, and spot 6), and redox related proteins (spot 8). Eight of these proteins were highly up-regulated in Whinchalsusu (WCS). The HSPs, Cupin family protein, and Globulin were specifically accumulated in WCS. The DEAD-box helicase was expressed in 3 cultivars except for WCS. Ribonuclease T2 and aldo-keto reductase were only expressed in 3 cultivars except for Daepung-susu (DPS). CONCLUSION(S): Functions of identified proteins were mainly involved in RNA metabolism, heat shock protein (HSP), and redox related protein. Thus, they may provide new insight into a better understanding of the charactreization between the cultivars of sorghum.

The effect of UV blocking lens on the denaturation of RNase A induced by UV-A (UV-A로 유발된 RNase A의 변성에 대한 UV 차단렌즈의 작용)

  • Park, Young Min;Park, Chung Seo;Lee, Heum-Sook;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • The aim of this study was to find the proper UV-A blocking percentage that could protect the denaturation of ribonuclease A (RNase A), one of protein enzymes in eye, induced by UV-A. RNase A was irradiated at 365 nm for 1, 3, 6, 24, 48, 72, 96 hr and the extent of denaturation was monitored by polyacrylamide gel electrophoresis. Furthermore, it was investigated whether blocking of UV-A by 20, 50, 80 and 99% eyeglass lens could protect the denaturation of RNase A or not. The denaturation of RNase A was induced by only 1 hr UV-A irradiation and the extent of denaturation became severe depending on UV-A irradiation time. The mild denaturation of RNase A induced by irradiation for 1 hr could be sufficiently protected by 20% UV-A blocking lens. When RNase A was irradiated for 3 hr, more that 50% blocking of UV-A needed to prevent the denaturation. Even though 99% UV-A blocking lens was used, the denaturation of RNase A induced by 6 hr irradiation could not be prevented perfectly. However, 99% UV-A blocking lens could dramatically decrease the severe denaturation of RNase A induced by irradiation for 96 hr.

  • PDF

Patterns of Protein Leaching to Dispersion Medium during W/O/W Double Emulsion-Based Microencapsulation Processes (이중유제법에 근거한 미립자 제조 공정 중 단백질의 분산매로의 전이 양상)

  • Cho, Mi-Hyun;Choi, Soo-Kyoung;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.369-377
    • /
    • 2004
  • The objective of this study was to investigate the patterns of protein leaching to an external phase during an ethyl acetate-based, double emulsion microencapsulation process. An aqueous protein solution (lactoglobulin, lysozyme, or ribonuclease; $W_1$) was emulsified in ethyl acetate containing poly-d,l-lactide-co-glycolide 75:25. The $W_1/O$ emulsion was transferred to a 0.5% polyvinyl alcohol solution saturated with ethyl acetate $(W_2)$. After the double emulsion was stirred for 5, 15, 30, or 45 min, additional 0.5% polyvinyl alcohol $(W_3)$ was quickly added into the emulsion. This so-called quenching step helped convert emulsion microdroplets into microspheres. After 2-hr stirring, microspheres were collected and dried. The degree of protein leaching to $W_2$ and/or $W_3$ phase was monitored during the microencapsulation process. In a separate, comparative experiment, the profile of protein leaching to an external phase was investigated during the conventional methylene chloride-based microencapsulation process. When ethyl acetate was used as a dispersed solvent, proteins continued diffusing to the $W_2$ phase, as stirring went on. Therefore, the timing of ethyl acetate quenching played an important role in determining the degree of protein microencapsulation efficiency. For example, when quenching was peformed after 5-min stirring of the primary $W_1/O$ emulsion, the encapsulation efficiencies of lactoglobulin and ribonuclease were $55.1{\pm}4.2\;and\;45.3{\pm}7.6%$, respectively. In contrast, when quenching was carried out in 45 min, their respective encapsulation efficiencies were $39.6{\pm}3.2\;and\;29.9{\pm}11.2%$. By sharp contrast, different results were attained with the methylene-chloride based process: up to 2 hr-stirring of the primary and double emulsions, less than 5% of a protein appeared in $W_2$. Afterwards, it started to partition from $W_1\;to\;W_2/W_3$, and such a tendency was affected by the amount of PLGA75:25 used to make microspheres. Different solvent properties (e.g., water miscibility) and their effect on microsphere hardening were to be held answerable for such marked differences observed with the two microencapsulation processes.

Implications of Streptomyces coelicolor RraAS1 as an activator of ribonuclease activity of Escherichia coli RNase E (Streptomyces coelicolor RraAS1의 Eschechia coli RNase E의 RNA 분해작용에 대한 활성제로서 기능 암시)

  • Heo, Jihune;Seo, Sojin;Lee, Boeun;Yeom, Ji-Hyun;Lee, Kangseok
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.243-248
    • /
    • 2016
  • RNase E (Rne) is an essential enzyme involved in the processing and degradation of a large portion of RNAs in Escherichia coli. The enzymatic activity of RNase E is controlled by regulators of ribonuclease activity, namely, RraA and RraB. Gram-positive bacterium Streptomyces coelicolor also contains homologs of Rne and RraA, designated as RNase ES (Rns), RraAS1, and RraAS2. In the present study, we investigated the effect of S. coelicolor RraAS1 on the ribonucleolytic activity of RNase E in E. coli. Coexpression of RraAS1 with Rne resulted in the decreased levels of rpsO, ftsZ, and rnhB mRNAs, which are RNase E substrates, and augmented the toxic effect of Rne overexpression on cell growth. These in vivo effects appeared to be induced by the binding of RraAS1 to Rne, as indicated by the results of co-immunoprecipitation analysis. These results suggested that RraAS1 induces ribonucleolytic activity of RNase E in E. coli.

Recent Advances in the Studies of Self-Incompatibility of plants (식물의 자가불화합성, 최근의 진보)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.253-275
    • /
    • 1994
  • Many flowering plants possess genetically controlled self -incompatibility (SI) system that prevents inbreeding and promotes outcrosses. SI is usually controlled by a single, multiallelic S-locus. In gametophytically controlled system, SI results when the S-allele of the pollen is matched by one of the two S-alleles in the style, while in the sporophytic system self-incompatible reaction occurs by the interaction between the pistil genotype and genotype of, not the pollen, but the pollen parent In the former system the self-incompatible phenotype of pollen is determined by the haploid genome of the pollen itself but in the latter the pollen phenotype is governed by the genotype of the pollen parent along with the occurrence of either to-dominant or dominant/recessive allelic interactions. In the sporophytic type the inhibition reaction occurs within minutes following pollen-stigma contact, the incompatible pollen grains usually failing to germinate, whereas in gametophytic system pollen tube inhibition takes place during growth in the transmitting tissue of the style. Recognition and rejection of self pollen are the result of interaction between the S-locus protein in the pistil and the pollen protein. In the gametophytic SI the S-associated glycoprotein which is similar to the fungal ribonuclease in structure and function are localized at the intercellular matrix in the transmitting tissue of the style, with the highest concentration in the collar of the stigma, while in the sporophytic SI deposit of abundant S-locus specific glycoprotein (SLSG).is detected in the cell wall of stigmatic papillae of the open flowers. In the gametophytic system S-gene is expressed mostly at the stigmatic collar the upper third of the style length and in the pollen after meiosis. On the other hand, in the sporophytic SI S-glycoprotein gene is expressed in the papillar cells of the stigma as well as in e sporophytic tape is cells of anther wall. Recognition and rejection of self pollen in the gametophytic type is the reaction between the ribonuclease in the transmitting tissue of the style and the protein in the cytoplasm of pollen tube, whereas in the sporophytic system the inhibition of selfed pollen is caused by the interaction between the Sycoprotein in the wall of stigmatic papillar cell and the tapetum-origin protein deposited on the outer wall of the pollen grain. The claim that the S-allele-associated proteins are involved in recognition and rejection of self pollen has been made merely based on indirect evidence. Recently it has been verified that inhibition of synthesis of S$_3$ protein in Petunia inflata plants of S$_2$S$_3$ genotype by the antisense S$_3$ gene resulted in failure of the transgenic plant to reject S$_3$ pollen and that expression of the transgenic encoding S$_3$ protein in the S$_1$S$_2$ genotype confers on the transgenic plant the ability to reject S$_3$ pollen. These finding Provide direct evidence that S-proteins control the s elf-incompatibility behavior of the pistil.

  • PDF

Role of the surface loop on the structure and biological activity of angiogenin

  • Jang, Seung-Hwan;Song, Hyang-Do;Kang, Dong-Ku;Chang, Soo-Ik;Kim, Min-Kyung;Cho, Kwang-Hwi;Scherga, Harold A.;Shin, Hang-Cheol
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.829-833
    • /
    • 2009
  • Angiogenin is a member of the ribonuclease superfamily that induces the formation of new blood vessels. It has been suggested that the surface loop of angiogenin defined by residues 59-71 plays a special role in angiogenic function (1); however, the mechanism of action is not clearly defined. To elucidate the role of the surface loop on the structure, function and stability of angiogenin, three surface loop mutants were produced in which 14 amino acids in the surface loop of RNase A were substituted for the 13 amino acids in the corresponding loop of angiogenin. The structure, stability and biological functions of the mutants were then investigated using biophysical and biological approaches. Even though the substitutions did not influence the overall structure of angiogenin, they affected the stability and angiogenic function of angiogenin, indicating that the surface loop of angiogenin plays a significant role in maintaining the stability and angiogenic function of angiogenin.

Ribonucleic Acid and Ribonuclease Activity in the Developing Shoot of Rice Plants at Low Temperature (벼의 유아기(刻芽期)에 냉해(冷害)가 RNA 및 RNase 활성도(活性度)에 미치는 영향(影響))

  • Kim, In-Soo;Lee, Chun-Yung
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.187-192
    • /
    • 1972
  • The qualitative and quantitative changes in RNA in terms of RNase activity of rice plants subjected to the chilling temperature were studied. The total RNA level increased at the early stage and thereafter decreased continuously while the progress of the chilling injury. The change of total RNA was mainly dependent upon the change of ribosomal RNA with soluble RNA less changed. Parallelism between total RNA level and RNase activity was observed at the early stage of chilling injury, while the inverse relationship of RNA RNase was seen in the later stage. Our observations indicate that synthetic function of RNase may be more closely related to ribosomal RNA than soluble RNA.

  • PDF

The Effect of Indole Acetic and Abscisic Acid on Ribonucleic Acid and Ribonuclease (Indole acetic acid 와 Abscisic acid 가 핵산(核酸)과 RNase 에 미치는 영향에 관(關)하여)

  • Jo, D.H.;Lee, C.Y.
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.181-186
    • /
    • 1972
  • Wheat coleoptile sections were treated with either $1.5{\times}10^{-5}M$ ABA or $5×10^{-5}M$ IAA in vitro, the results may be summarized as follows, 1. The treatmert of IAA decreased the level of high molecular weight RNA F2 and F3 but that with ABA increased the F4 level. 2. IAA caused an increased activity of G2 isozyme, while ABA suppressed the activity of G3 isozyme. 3. The results may suggest that there may exist common effects of IAA and ABA on RNA and RNase. 4. The latent RNase activity caused by SH blocking reagent (p-hydroxymercury benzoate, Pb et al) was not observed.

  • PDF

PURIFICATION AND PROPERTIES OF EXTRACELLULAR NUCLEASE(S) FROM RUMEN CONTENTS OF BUBALUS BUBALIS

  • Sinha, P.R.;Dutta, S.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 1990
  • Extracellular nuclease(s) in buffalo rumen fluid were purified from strained rumen fluid by a procedure involving Seitz filtration, acetone fractionation and gel filtration on Sephadex G-100. The enzyme resolved into two peaks exhibiting both DNase and RNase activities. The molecular weight of enzyme corresponding to peaks I and II were approximately 30,000 and 12,000 respectively. The properties of enzymes from the two peaks, however, were same. Optimum temperature for both DNase and RNase activities was at $50^{\circ}C$. Whereas DNase activity was stable upto $60^{\circ}C$, RNase activity was stable only up to $50^{\circ}C$. DNase activity recorded two pH optima, one at pH 5.5 and the other at pH 7.0. RNase activity recorded a broad pH optimum between pH 6.0-8.0. pH stability of the enzyme coincided with pH optima for both the activities. DNase activity was stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. RNase activity was also stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. Reducing agents stimulated both the activities.