• Title/Summary/Keyword: rib-plate

Search Result 147, Processing Time 0.028 seconds

Applicability Evaluation of ㄱ Type Perfobond Rib Shear Connectors (ㄱ형 Perfobond 리브 전단연결재의 적용성 평가)

  • Lee, Heung-Su;Chung, Chul-Hun;Kim, Byung-Suk;Kang, Jae-Yoon;Sohn, You-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.410-413
    • /
    • 2006
  • The ㄱ type perfobond rib shear connector is a ㄱ type flat steel plate with a number of holes punched through. This connector can be effectively used in girder with high shear. The ㄱ type perfobond rib shear connector exhibit very stiff behaviour under service load conditions and also had the characteristic of retaining a significant amount of load after the attainment of ultimate capacity. The ㄱ type perfobond rib shear connector with safety factor of 3 is applied shear connector of CFT composite girder. From static test result of CFT composite girder, relative displacement of 0.01mm measured at the service load moment. At design of the ㄱ type perfobond rib shear connector, applying safety factor of 3 was more conservative than test result.

  • PDF

Delayed Diaphragmatic Injury with Massive Hemothorax Due to Lower Rib Fracture (하부늑골 골절에 의한 지연성 대량혈흉을 동반한 횡격막 손상)

  • Kim, Woo-Shik;Kim, Joong-Suck
    • Journal of Trauma and Injury
    • /
    • v.28 no.2
    • /
    • pp.79-82
    • /
    • 2015
  • Simple rib fracture is one of most common injury after blunt thoracic trauma found in approximately 7% to 40% of cases. Delayed traumatic diaphragmatic injury with massive hemothorax after rib fracture is rare but a potentially life-threatening condition. We present a rare case of a 79-year-old male with delayed diaphragmatic injury with massive hemothorax due to fracture of the lower ribs. Under thoracoscopy, hemothorax was evacuated, diaphragmatic rupture was identified and repaired, and the lower ribs were fixed with metal plate (s). Although simple lower rib fractures may be the only clinical finding, close observation and monitoring are required because of the possibility of diaphragmatic and/or intraabdominal organ injury.

  • PDF

A New T Type Perfobond Shear Connector for Composite Action (합성작용을 위한 새로운 Perfobond T형 전단연결재)

  • Chung, Chul-Hun;Kim, Jong-Suk;Shim, Chang-Su;Kim, Kwang-Soo;Jung, Kwang-Hoe;Sim, Chung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.293-296
    • /
    • 2006
  • The results and interpretations of push-out tests on shear connector devices for composite bridges carried out in this study are presented. The devices under investigations are headed studes, perfobond rib, ㄱtype perfobond rib, T- Connector and a new type of shear connector called T type perfobond rib. This new connector is flat steel plate with a number of holes punched through. The results obtained indicate that the T type perfobond rib shear connectors exhibit adequate ductility and substantially higher capacities. Therefore for composite beams utilizing reinforced concrete slabs, the T type perfobond rib shear connectors is a viable alternative to the headed studs.

  • PDF

Performance Evaluation of Perfobond Rib FRP Shear Connectors for Composition between FRP and Concrete (FRP-콘크리트 합성을 위한 퍼포본드 전단 연결재의 성능 평가)

  • Park, Sung-Yong;Cho, Jeong-Rae;Hwang, Hoon-Hee;Cho, Keun-Hee;Baek, Dong-Youl;Kim, Sung-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.297-300
    • /
    • 2006
  • One of main issues of the FRP-concrete composite member is shear connection between FRP and concrete in order to secure composite behavior of FRP and concrete. To solve this problem, perfobond rib FRP shear connector is introduced for the mechanical shear connection. In this study, experimental study was carried out on the perfobond rib FRP shear connectors in order to develop the effective details of perfobond rib FRP shear connectors. Pull-out test specimens were manufactured with FRP plate with holes embedded in concrete block. Main parameters considered in this study were diameter of holes, ratio of spacing between the centres of holes to the diameter of holes, and thickness of FRP plates. Test results are discussed according to above parameters compared with other empirical expressions for steel perfobond rib connector.

  • PDF

Visual Evaluation of Rib Shadow and Lung Marking during High-voltage Chest Radiography (흉부 고관전압 촬영에 있어서의 늑골음영과 폐문리의 시각적 평가)

  • Choi, Kwon-Kyu;Lee, Chang-Yup;Shin, Dong-Sik;Kim, Chang-Nam;Choi, Ki-Young;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.15 no.1
    • /
    • pp.99-105
    • /
    • 1992
  • Visual evaluation of rib shadow and lung marking during high voltage chest radiography. The Purpose of this study is to improvement of visual discrimination of pulmonary structures on the conventional chest radiogram. The author prepared an artificial lung using an acryl plate, 8 cm in thickness, which is nearly equivalent to human lung, and 0.6 cm thickness of an aluminum plate for an artificial rib, and 0.5 cm of an acryl plate as a pulmonary vessel as well. And they were used as objects for experimental radiograms. This study performed with gradual increasing densities of film bases in the sequences of densities of 0.6, 0.9, 1.1 and 1.3. We made two combinations of images after multiple and regular cuts, with width of 1 cm, of 4 radiograms at the above mentioned densities of film bases. One image consisted of alternative combination of radiograms taken at densities of 0.6 and 1.3, and the other did at 0.9 and 1.1. The latter image provided better visual perception of pulmonary structures than the former. Experimental radiograms were also taken with 60 kV and 120 kV respectively. After careful evaluation and comparison to images taken on varieties of different densities with combinations and kV, the author had a conclusion that it is advisable to use a high kV X-ray which makes rib shadow subtle, for better visual delineation of pulmonary structures behind ribcage, eventhough contrast of pulmonary structures are decreased at high kV radiogram.

  • PDF

Analytical Study on the Development of High-Performance Orthotropic Steel Deck considered the Fatigue Behaviors of Structural Details (구조 상세부의 피로거동을 고려한 고성능 강바닥판 개발에 관한 해석적 연구)

  • Kyung, Kab Soo;Shin, Dong Ho;Kim, Kyo Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.417-426
    • /
    • 2006
  • Various fatigue damages have been reported in orthotropic steel deck structures put upon girders. These damages are caused by complex behaviors of the deck, which is directly subjected to vehicle loads. To estimate the causes of fatigue cracks at the welded connected parts of the trough rib and the flor beam, and the trough rib and the deck plate, in orthotropic steel deck structures, FE analyses were first, performed in this study. Parameter studies were carried out to suggest effective structural details that consider fatigue, in which the main parameters are the thickness of the deck plate, the shape of the connection of the trough rib and the flor beam such as the slit form, and the welding length. This study suggests that the effective structural details improved the fatigue strength and discusses.

An Experimental Study on the Behavior of the Perforated Rib Connector with Shearing Bars (전단구속철근을 배치한 유공강판 전단연결재에 관한 실험적 연구)

  • Kim, Sung-Chil;Kim, Young-Ho;Yu, Sung-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.175-182
    • /
    • 2006
  • In the design of composite structures, shear connectors such as headed stud, channel, perforated plate, etc, are commonly used to transfer longitudinal shear forces across the steel-concrete interface. Many researches have been conducted to improve the characteristics of different types of shear connector. This paper presents the results of 11 push-out tests performed on the new perforated rib connectors with shearing bars embedded in concrete slab under static loads. The results obtained from these tests are as following : 1) The bearing plate welded on both sides of perforated rib plate improves the stiffness and strength. 2) The capacity of perforated connectors is influenced primarily by the transverse reinforcements and shearing bars.

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

Augmentation of Heat Transfer by two Dimensional Impinging Air Jet (Effect of Square Rib Width) (2차원(次元) 충돌분류(衝突噴流)의 열전달(熱傳達) 증진(增進)에 관(關)한 실험적(實驗的) 연구(硏究) (사각(四角) Rib폭(幅)의 효과(效果)))

  • Lee, Y.H.;Rhee, K.S.;Seo, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.350-356
    • /
    • 1988
  • The impinging air jet system is still being used in the various fields with its inherent merits, that is, the easiness in engineering application and high heat transfer coefficients at stagnation point. The purpose of this study is augmentation of heat transfer without additional power in the rectangular air jet which impinges vertically to the heating surface. As a method of passive heat transfer augmentation in a two-Dimensional impinging jet, the transverse-repeated surface roughness of square cross-section is used. This paper deals with the experimental study on the characteristics of heat transfer at the x-direction in between nozzle exit and heating surface of flat plate, and that of ribbed plate. And this study also investigates the effect of square rib widths. The integral average heat transfer coefficient of ribbed plate is about 2.2 times larger than that of flat plate.

  • PDF

ADINA/FSI Analysis of Petrochemical Plant Column Mixer (화학 플랜트용 칼럼 믹서의 ADINA/FSI 해석)

  • Lee, Won-Suk;Jung, Goo-Choong;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.916-921
    • /
    • 2006
  • Column mixer is one of the facility to mix fluids at petrochemical plants. The column vibration is caused by pumps for fluid inflow and mixing of inside fluids. This fluid induced vibration is mainly responsible for the reduction of column life. Measurements were performed three times for understanding the vibration characteristics of the column. First experimental results showed the need of stiffness reinforcement. After the reinforcement work, second measurement conformed the difference between two results. Modal analysis was also performed to investigate the resonance of the column vibration and the damage of the rib plate. To confirm the generation of the fluid instability in the column mixer fluid structure interaction analysis using ADINA/FSI was performed which showed the necessity of the modification of the rotary valve.

  • PDF