• Title/Summary/Keyword: rheology of suspensions

Search Result 67, Processing Time 0.021 seconds

Suspensions and polymers - Common links in rheology

  • Harrison, G.;Franks, G.V.;Tirtaatmadja, V.;Boger, D.V.
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.197-218
    • /
    • 1999
  • Rheological techniques are frequently used to characterize particulate suspensions and polymer systems. Experimental data frequently show that similar trends and characteristics are found in both systems. Using common examples and illustrations of the rheological behaviour, we attempt to bring together these separate fields and investigate the common links in the different systems. In many cases the similar rheological behaviour observed in these different systems can be related to the same basic physical principles.

  • PDF

Rheology of alumina suspensions stabilized with Tiron

  • Gulicovski, J.J.;Cerovic, Lj.S.;Milonjic, S.K.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • Pressure filtration technique was used to obtain defect-free microstructure of green cast ceramic bodies. Stable alumina suspensions of desired rheology (<5 Pa s at $1\;s^{-1}$) containing 60-80 mass. % solid loading were prepared in the alkaline region (at $pH{\approx}9$) with an optimum amount of 0.5 dmb % of Tiron added. Acidic region (at $pH{\approx}4$) enabled the preparation of 60 mass. % suspensions with addition of 1.5 dmb % of Tiron. The best quality slip was processed from an 80 mass.% suspension with 63% of theoretical density. The homogeneity of particle packing and the absence of defects in microstructure were proven by narrow pore size distribution (ranging from 32 to 64 nm, with up to 85% abundance), confirming advantages of the wet consolidation route.

Effect of surfactant adsorption on the rheology of suspensions flocculated by associating polymers

  • Otsubo, Yasufumi;Horigome, Misao
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.4
    • /
    • pp.179-185
    • /
    • 2003
  • Associating polymers act as flocculants in colloidal suspensions, because the hydrophobic groups (hydrophobes) can adsorb onto particle surfaces and create intermolecular cross-linking. The steady-shear viscosity and dynamic viscoelasticity were measured for suspensions flocculated by multichain bridging of associating polymers. The effects of surfactant on the suspension rheology are studied in relation to the bridging conformation. The surfactant molecule behaves as a displacer and the polymer chains are forced to desorb from the particle surfaces. The overall effect of surfactant is the reduction of suspension viscosity. However, the additions of a small amount of surfactant to suspensions, in which the degree of bridging is low, cause a viscosity increase, although the number of chains forming one bridge is decreased by the forced desorption of associating polymer. Since the polymer chains desorbed from one bridge can form another bridge between bare particles, the bridging density over the system is increased. Therefore, the surfactant adsorption leads to a viscosity increase. The surfactant influences the viscosity in two opposing ways depending on the degree of bridging.

Effect of associating polymer on the dispersion stability and rheology of suspensions

  • Otsubo, Yasufumi;Horigome, Misao
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Associating polymers are hydrophilic long-chain molecules to which a small amount of hydrophobic groups (hydrophobes) is incorporated. In aqueous solution, the association interactions result in the formation of three-dimensional network through flowerlike micelles at high concentrations. In colloidal suspensions, the associating polymers act as flocculated by bridging mechanism. The rheological properties of suspensions flocculated by associating polymers end-capped with hydrophobes are studied in relation to the bridging conformation. At low polymer concentrations, the polymer chains effectively form bridges between particles by multichain association. The suspensions are highly flocculated and show typical viscoelastic responses. When the polymer concentration is increased above the absorbance at saturation, the excess polymer chains remaining in the solution phase build up three-dimensional network by associating interactions. Since the presence of particles does not significantly influence the network structures in the medium, the relative viscosity, which gives a measure of the degree of flocculation is decreased with increasing polymer concentration. The bridging conformation and flocculation level vary strongly depending on the polymer concentrations.

Compressive rheology of aggregated particulate suspensions

  • Gladman Brendan;Usher Shane P.;Scales Peter J.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.191-197
    • /
    • 2006
  • The measurement of the compressional rheological parameters for an aggregated particulate suspension is described. The parameters include the compressive yield stress and hindered settling function, describing the extent and rate of dewatering respectively. The variation of these parameters with shear rate and time of shear is also considered in the light of their sensitivity to low shear rates, with particular reference to the case of flocculated particulate suspensions. The latter is seen to be important in the future development of a comprehensive understanding of compressive rheology of aggregated particulate suspensions in industrial applications such as thickening, filtration and centrifugation.

Effective viscosity of bidisperse suspensions

  • Koo Sangkyun;Song Kwang Ho
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2005
  • We determine the effective viscosity of suspensions with bidisperse particle size distribution by modifying an effective-medium theory that was proposed by Acrivos and Chang (1987) for monodisperse suspensions. The modified theory uses a simple model that captures some important effects of multi-particle hydrodynamic interactions. The modifications are described in detail in the present study. Estimations of effective viscosity by the modified theory are compared with the results of prior work for monodisperse and bidisperse suspensions. It is shown that the estimations agree very well with experimental or other calculated results up to approximately 0.45 of normalized particle volume fraction which is the ratio of volume faction to the maximum volume fraction of particles for bidisperse suspensions.

Comparison of the rheologies of laterite and goethite suspensions

  • James, David F.;Blakey, Brian C.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.109-115
    • /
    • 2004
  • Comparisons in shear behaviour are made between aqueous suspensions of a laterite ore and aqueous suspensions of pure goethite ($\alpha$-FeOOH), following prior papers in which the rheologies of the two mineral suspensions were characterized individually. Drawing comparisons is appropriate because the ore sample was about 65% goethite and it was originally thought that the pure goethite might serve as a model of the more complex laterite. Viscosity measurements of the two suspensions show that, at the same solids fraction, the goethite suspensions were more viscous by an order of magnitude, even though the goethite particles had much smaller aspect ratios. Similarly, yield stresses for the goethite suspensions were at least an order of magnitude higher. The most significant difference was in transient behaviour. Time-dependent effects were investigated by subjecting a fluid to a step change or a ramp sequence in shear rate, and measuring the resulting shear stress over time. In most cases, transient behaviour could not be detected in the goethite suspensions, whereas stresses in the laterite suspensions relaxed over periods of order 10 seconds. The disparate results indicate that a goethite suspension is a poor model of a laterite slurry.