Browse > Article

Effective viscosity of bidisperse suspensions  

Koo Sangkyun (Dept. of Chemical & Biological Engineering, Korea University)
Song Kwang Ho (LG Chem Research Park)
Publication Information
Korea-Australia Rheology Journal / v.17, no.1, 2005 , pp. 27-32 More about this Journal
Abstract
We determine the effective viscosity of suspensions with bidisperse particle size distribution by modifying an effective-medium theory that was proposed by Acrivos and Chang (1987) for monodisperse suspensions. The modified theory uses a simple model that captures some important effects of multi-particle hydrodynamic interactions. The modifications are described in detail in the present study. Estimations of effective viscosity by the modified theory are compared with the results of prior work for monodisperse and bidisperse suspensions. It is shown that the estimations agree very well with experimental or other calculated results up to approximately 0.45 of normalized particle volume fraction which is the ratio of volume faction to the maximum volume fraction of particles for bidisperse suspensions.
Keywords
effective-medium theory; effective viscosity; bidisperse suspensions; multi-particle hydrodynamic interaction; conditional ensemble average;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Beenakker, C. W. J., 1984, The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion), Physica A 128, 48-81   DOI   ScienceOn
2 Bouillot, J. L., C. Camoin, M. Belzons, R. Blanc and E. Guyon, 1982, Experiments on 2-D suspensions, Adv. Coll. Interface Sci. 17, 299   DOI   ScienceOn
3 Chang, E. Y. and A. Acrivos, 1987, The rate of heat conduction from a heated sphere to a packed bed of passive spheres, Chem. Eng. Comm. 58, 165-170   DOI
4 Chun, M. -S., S. Lee, T. S. Lee and J. S. Cho, 2004, Microstructure and shear modulus in concentrated dispersions of bidisperse charged spherical colloids, Korea-Australia Rheology J. 16(1), 17-26
5 Leal, L. G., 1992, Laminar flow and convective transport processes: Scaling principles and asymptotic analysis, Butterworth- Heinemann, Boston
6 Patzold, R., 1980, Die Abhangigkeit des FlieBverhaltens konzentrierter Kugelsuspensionen von der Stromungsform: Ein Vergleich der Viskositat in Scher- und Dehnstromungen, Rheol. Acta 19, 322-344   DOI
7 Shappiro, A. P. and R. F. Probstein, 1992, Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions, Phys. Rev. Lett. 68, 1422-1425   DOI   ScienceOn
8 Mo, G. and A. S. Sangani, 1994, A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles, Phys. Fluids 6, 1637-1652   DOI   ScienceOn
9 Batcheloer, G. K., 1970, The stress system in a suspension of force-free particles, J. Fluid Mech. 41, 545-570   DOI
10 Acrivos, A. and E. Y. Chang, 1986, A model for estimating transport quantities in two-phase materials, Phys. Fluids 29, 3-4   DOI
11 Brady, J. F. and G. Bossis, 1985, The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation, J. Fluid Mech. 155, 105-129   DOI   ScienceOn
12 Chang, E. Y. and A. Acrivos, 1986, Rate of heat conduction from a heated sphere to a matrix containing passive spheres of a different conductivity, J. Appl. Phys. 59, 3375-3382   DOI
13 Gadala-Maria, F. A., 1979, The rheology of concentrated suspensions, Ph. D. Thesis, Stanford University
14 Chang, C. and R. L. Powelll, 1993, Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles, J. Fluid Mech. 253, 1-25   DOI   ScienceOn
15 Koo, S. and A. S. Sangani, 2002, Effective-medium theories for predicting hydrodynamic transport properties of bidisperse suspensions, Phys. Fluids 14, 3522-3533   DOI   ScienceOn
16 Chong, J. S., E. B. Christiansen and A. D. Baer, 1971, Rheology of concentrated suspensions, J. Appl. Polymer. Sci. 15, 2007- 2021   DOI
17 Leonard, P. J., D. Henderson and J. A. Barker, 1971, Calculation of the radial distribution function of hard sphere mixtures in the Percus-Yevick approximation, Mol. Phys. 21, 107-111   DOI   ScienceOn
18 Poslinski, A. J., M. E. Ryan, R. K. Gupta, S. G. Seshadri and F.J. Frechette, 1988, Rheological behavior of filled polymeric systems II. The effect of a bimodal size distribution of particulates, J. Rheol. 32, 751-771   DOI
19 Throop, C. J. and R. J. Bearman, 1965, Radial distribution function for mixtures of hard spheres, J. Chem. Phys. 42, 2838- 2843   DOI
20 Lebowitz, J. L., 1964, Exact solution of generalized Percus- Yevick equation for a mixture of hard spheres, Phys. Rev. 133, A895-A899   DOI
21 Ladd, A. C., 1990, Hydrodynamic transport coefficients of random dispersions of hard spheres, J. Chem. Phys. 93, 3484- 3494   DOI
22 Sangani, A. S. and G. Mo, 1994, Inclusion of lubrication forces in dynamic simulations, Phys. Fluids 6, 1653-1662   DOI   ScienceOn