• Title/Summary/Keyword: rheology control

Search Result 137, Processing Time 0.04 seconds

Conformation of single polymer molecule in a slot coating flow

  • Lee, Jeong-Yong;Ryu, Bo-Kyung;Lee, Joo-Sung;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • To satisfy good mechanical and optical properties of polymer-coated film products, it will be indispensable to elucidate the molecular orientation of polymer chains within coating liquids in coating flows. Using hybridized numerical method between computational fluid dynamics (CFD) and Brownian dynamics (BD) simulations can provide the useful information for the better quality control of coated films. Flexible polymer chains, e.g., ${\lambda}$-DNA molecules here, change their conformation according to the flow strength and the flow type. The molecular conformation within the coated film on the web or substrate is quite different, because the polymer chains experience the complicated flow strength and flow types in flow field. Especially in the slot coating flow, these chains are more extended by the extension-like flow field generated in the free surface curvature just beyond the downstream die region. Also, the polymer chain extension beneath the free surface can be affected by the die geometry, e.g., the coating gap, changing flow field.

Dynamic Simulation of Solid Particle Considering Change by Viscosity in Rheology Material (반응고 재료에서 점성을 고려한 고상입자의 거동예측을 위한 수치모사 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.26-38
    • /
    • 2009
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology process to be performed. General plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape which is rectangle shape(square array), rectangle shape(hexagonal array), and free shape tool. In addition, the dynamics behavior compare with Okano equation to power law model which is viscosity equation.

In-Process Control of an Infant Formula with Rice Starch using Rheology (쌀 전분의 유동성을 함유한 영.유아용 조제분유의 공정 관리)

  • Heo, Young-Suk;Konuklar, Gul
    • Journal of Dairy Science and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.45-49
    • /
    • 2008
  • We studied the feasibility of monitoring and controlling the manufacturing process of an infant formula with rice starch by testing in-process samples using rheology. We used DSC to first determine the gelatinization temperature of the rice starch, a key ingredient of this product. With this characteristic temperature and the process design known, rheological measurements were conducted on the in-process samples for detecting the presence and extent of gelatinization and retrogradation of rice starch; in-process samples were collected from the carbohydrate tank, after the homogenizer, and the finished product tank. The correlation between the rheological measurements on these samples and manufacturing performance proved that rheology is a very sensitive tool for monitoring the structural development of this infant formula during main process, and their influence on sterilization efficiency. We observed that the lower degree of gelatinization during main process, a shorter residence time in the finished product tank, and using caustic flush rather than clean-in-place additively lead to higher sterilization efficiency. These findings can be utilized for a rational design and analysis of the manufacturing process for infant formulas containing rice starch.

  • PDF

Rheological characteristics of non-spherical graphite suspensions

  • Mustafa, Hiromoto Usui;Ishizuki, Masanari;Shinge, Ibuki;Suzuki, Hiroshi
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • Since the microstructure of functional thin films depends on the dispersion characteristics of dense slurry, it is important to control the agglomerative nature of slurries under processing. The present authors have been discussing the model prediction of agglomerative nature and local rate of agglomeration in dense suspensions. The experiments have been peformed under shear flow using the nearly spherical and oblate type graphite particles. In this study, the experiment has been conducted using water and glycerol as dispersion media. Stress control type rheometer was used to measure the slurry rheology. Local agglomeration of graphite particles has been predicted by using Usui's model. The experimental results show that both the shape and slurry processing method affect on the local dispersion condition. The agglomeration formed by oblate type graphite particles seems to be more difficult to break up than that of spherical particles.

Analysis of Grain Size Controlled Rheology Materials Dynamics for Prediction of Solid Particles Behavior (레오로지 소재의 고상입자 거동 예측을 위한 결정립 동력학 해석)

  • Kim H.I.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1337-1340
    • /
    • 2005
  • A rheology casting technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forming. The liquid segregation is important on mechanical properties of materials using rheology casting. In this study, so, molecular dynamics simulations were performed for the control of liquid segregation. Because the dynamics of fluid flow about nano-scaled materials is completely different from continuum, molecular dynamics simulations were used. The behavior of particles was far from the truth according to boundary conditions in simple flow. But various movement of particles appear at two or more molecular simulations.

  • PDF

Effect of the $CO_2$ on Viscosity Change in Continuous Microcellular Foaming Processing (초미세 발포 연속공정을 위한 $CO_2$ 사용이 재료의 점도변화에 미치는 영향)

  • 문용락;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1394-1397
    • /
    • 2003
  • The first thing in developing injection molding and extrusion with microcellular foaming process is to get a grip on one phase state's rheology of gas and polymer solution. Understanding rheology is essential to design mold or die. and it is so important to control the condition of process. Also, this data is got the utmost out of simulation carrying out. In this paper, we will see the measurement of rheology in one phase that mixed polypropylene which contains talc with carbon dioxide of super critical fluid state, and will compare its result with the simulation result.

  • PDF

Grain Control of Aluminum Alloys with Electromagnetic Stirring for Rheology Forging (레오로지 단조를 위한 전자교반응용 알루미늄 합금의 결정립 제어)

  • Oh S. W.;Ko J. H.;Kim T. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.350-353
    • /
    • 2005
  • Microstructures according to experimental conditions (pouring temperature, stirring current and stirring time) and hardness according to aging time were investigated for A356 cast aluminum alloy and 7075 wrought aluminum alloy. In pouring temperature control, grains became larger and non-uniform at high temperature, however dendritic shapes were shown at lower temperature. In stirring current control, dendritic grains were not destroyed enough at lower current, however fine grains were agglomerated at higher current. And, in stirring time control, grains were more globular but grew larger and larger with the stirring time increasing.

  • PDF

The Effect of Rheology Flow with Grain Size Controlled Material on Solid Particles Behavior (결정립 제어 소재의 레오로지 유동이 고상입자의 거동에 미치는 영향)

  • Jung Y. S.;Seo P. K.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.351-359
    • /
    • 2005
  • The semi-solid processing is now becoming of great interest for the production of various parts by pressure die casting. Also, the rheo-casting has been substituted for thixo-casting, because the rheo-casting can control the solid particles to globular and non-dendritic solid phase. In the rheo-casting process, the important thing is to control the solid particles behavior in semi-solid materials. So in this paper, to control solid particles behavior in semi-solid materials, we experimented about the die filling tests during the semi-solid die casting in 0.3, 0.4, 0.5 and 0, 6 solid fraction. The die filling in semi-solid die casting were simulated by MAGMA soft/thixo module. By the die filling tests and computer simulation, the effect of solid particles behavior in rheology flow had been investigated.