• Title/Summary/Keyword: rheological properties

Search Result 1,379, Processing Time 0.023 seconds

Study on the rheological, thermal and mechanical properties of thermoplastic starch plasticized by glycerol (열가소성 녹말의 유변학 성질, 열적 성질 및 기계적 성질에 관한 연구)

  • Bui, Duc Nhat;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.21-26
    • /
    • 2018
  • Thermoplastic starch (TPS) was prepared by mixing starch with glycerol as a plasticizer. The glycerol content ranged from 20 to 35 wt. % and TPS was prepared in a twin screw extruder. The shear viscosity, thermal and mechanical properties of the TPS were investigated. The viscosity of TPS exhibited typical shear thinning behavior: decreasing viscosity with increasing shear rate. The power index, n, increased with increasing glycerol content. This is because as the content of glycerol, a Newtonian fluid, increases, the viscosity behavior of the TPS becomes closer to that of a Newtonian fluid. The thermal behavior of TPS showed that starch and glycerol are miscible. In addition, when TPS was aged for more than one day at room temperature, TPS showed a partially miscible phase structure. The moisture absorbed into the TPS was assumed to change the phase behavior. The mechanical properties of TPS were found to be strongly dependent on the content of the plasticizer. Both the toughness and stiffness increased with increasing plasticizer content. DSC showed that this unusual result was due to the combined effect of humidity and the high amylose content in starch.

Soaking Properties and Quality Characteristics of Korean white Gruel with Different Blending Time of High-Dietary Fiber Rice'Goami 2' (고아미 2호의 수침특성 및 마쇄 시간을 달리한 흰 죽의 품질 특성)

  • Hwang InKyeong;Lee Ji Hyun;Seo Han-Seok;Kim Soo Hee;Lee Jung-Ro
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.927-935
    • /
    • 2005
  • The objectives of this study were to investigate the soaking properties of the high-dietary fiber rice 'Goami 2'and to develop korean white Gruel prepared with Goami 2. With increasing soaking time at room temperature ($20^{\circ}C$), the water absorbing character of Goami 2 and Ilpum significantly increased during the first hour of soaking time, after which it remained constant. On the contrary, the hardness of Goami 2 and Ilpum significantly decreased with increasing soaking time until one hour, after which it remained constant. The properties of Korean white gruel were evaluated using two varieties of rice (Goami 2, Ilpum) and three blending times (10, 20 and 30 seconds respectively). The rice flour of Goami 2 for Korean white gruel showed a greater number of small particles (<20 $\mu$m) than that of Ilpum. Hunter a'and b'values of Korean white gruel prepared with Goami 2 were higher than that of Korean white gruel prepared with Ilpum. The consistency values on Bostwick consistometer of Korean white gruel prepared with Goami 2 were higher than those of Korean white gruel prepared with Ilpum. The texture of Korean white gruel was examined using a back extrusion rig. All of the rheological parameters of Korean white gruel prepared with Goami 2 were decreased with increasing blending time, while in llpum they were increased. In the sensory evaluation results, the overall acceptability of korean white gruel prepared with Goami 2 blended for 20sec showed the highest sensory scores and desirability.

Effects of Alkaline Reagent on the Rheological Properties of Wheat Flour and Noodle Property (알칼리제가 밀가루의 리올로지와 국수의 성질에 미치는 영향)

  • Kim, Sung-Kon;Kim, Heung-Rae;Bang, Jung-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.58-65
    • /
    • 1996
  • The effects of sodium carbonate (Na), potassuim carbonate (K) and their mixtures (Na/K=0.7-2.0) on pasting properties by amylograph and mixing properties by farinograph of wheat flour (9.45% protein), and of alkali mixtures (0.16%) on noodle property were examined. The concentrations of alkali used were 0.08%, 0.10% and 0.16% based on flour weight (14% mb). The salt (1.7%) and alkali decreased the initial pasting temperature but increased the amylograph peak viscosity. The peak viscosity increased with the increase of alkali concentration, but the mixing ratio at a fixed concentration had no effect on peak viscosity. The farinograph absorption decreased by salt, but the effect of salt diminished in the presence of alkali. The salt and alkali increased the farinograph stability, of which the former was more pronounced. The effect of alkali alone and mixtures in the presence of salt on amylograph and farinograph were essentially the same regardless the concentrations and mixing ratios. The yellowness and breaking force of dry noodle prepared with salt and alkali was higher than that prepared with salt only. The weight and volume gain of the optimum cooked noodle remained essentially constant, but the shear force and compression force were increased by the alkali.

  • PDF

Effects of Solder Particle Size on Rheology and Printing Properties of Solder Paste (미세피치 접합용 솔더 페이스트의 솔더 분말 크기에 따른 레올로지 및 인쇄 특성 평가)

  • Jun, So-Yeon;Lee, Tae-Young;Park, So-Jeong;Lee, Jonghun;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2022
  • The wettability and rheological properties of solder paste with the size of the solder powder were evaluated. To formulate the solder paste, three types of solder powder were used: T4 (20~28 ㎛), T5 (15~25 ㎛), and T6 (5~15 ㎛). The viscosities of the T4, T5, and T6 solder pastes at 10 RPM were 155, 263, and 418 Pa·s, respectively. After 7 days, the viscosity of the T4 solder paste slightly increased by 2.6% and that of T5 was increased by 20.6%. The viscosity of the T6 solder paste after 7 days could not be measured due to high viscosity. The viscosity variation with solder particle size also affected on the printability of the solder. In the case of the T4 solder paste, printability, slump, bridging, and soldering properties were excellent. On the other hand, T5 showed slight dewetting and solder ball defects. Especially, T6, which the smallest powder size, showed poor printability and dewetting at the edge of solder.

Evaluation of Fluidity Over Time and Mechanical Properties of Cement-based Composite Materials for 3D Printing (3D 프린팅용 시멘트계 복합재료의 경시변화 및 역학적 특성평가)

  • Seo, Eun-A;Lee, Ho-Jae;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.73-80
    • /
    • 2022
  • This study evaluated changes in fluidity and rheological properties over time for 3D printed composite materials, and evaluated compressive strength and splitting tensile strength properties for laminated and molded specimens. The composite material for 3D printing starts to change rapidly after 30 minutes of extrusion, and the viscosity of the material tends to be maintained up to 90 minutes, but it was confirmed that construction within 60 minutes after mixing is effective. The compressive strength of the laminated test specimen showed equivalent or better performance at all ages compared to the molded test specimen. In the stress-strain curve of the laminated specimen, the initial slope was similar to that of the molded specimen, but the descending slope was on average 1.9 times higher than that of the molded specimen, indicating relatively brittle behavior. The splitting tensile strength of the P-V laminated specimen was about 6% lower than that of the molded specimen. It is judged that this is because the interfacial adhesion force against the vertical load is affected by the pattern direction of the laminated test specimen.

Studies on Cholesterol Free Mozzarella Cheese Manufacture (Cholesterol Free Mozzarella Cheese 제조에 관한 연구)

  • 전정기;김병용
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.3
    • /
    • pp.587-592
    • /
    • 2004
  • This research was aimed to manufacture the cholesterol free Mozzarella cheese with corn oil that contains high unsaturated fatty acid helping the reduction of serum cholesterol. Cheese stored at 1$0^{\circ}C$ was evaluated with general analysis, volatile free fatty acid, cholesterol, meltability, stretchability, color, rheological properties, and sensory evaluation. Moisture contents decreased during cheese storage period, whereas protein contents and pH value increased significantly (P < 0.05), but fat contents did not show any significant change. Linoleic acid was tile main volatile free fatty acid in a fat of cheese, and cholesterol contents were measured 4.34$\pm$ 0.04 mg/100 g in cheese. The meltability of cheese gradually increased during ripening, while the stretchability decreased. The color of cheese showed translucent yellow. Hardness, springiness, and cohesiveness increased significantly up to 21 days of storage. Compared to control cheese made by conventional way, QDA scores of shiny, oiling off, and melting of cholesterol free cheese were significantly different. These results suggested that health-oriented cholesterol free Mozzarella cheese would be made by addition of the corn oil.

Effects of Azodicarbonamide on the Rheology of Wheat Flour Dough and the Quality Characteristics of Bread (Azodicarbonamide를 첨가한 밀가루 반죽의 물성 및 냉동저장 중 제빵 특성의 변화)

  • La, Im-Joung;Lee, Man-Chong;Park, Heui-Dong;Kim, Kwan-Pil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1566-1572
    • /
    • 2004
  • Effects of azodicarbonamide (ADA) were investigated on the rheological properties of flour dough by measuring farinogram, amylogram and extensogram based on the amount of ADA added. Quality characteristics of the bread made with the ADA added dough were also evaluated by measuring dough volume, moisture content, pH, proofed time, baking loss and textural characteristics. The farinogram showed that water absorption, stability and elasticity of the dough with ADA were higher than those without ADA. However, its absorption time and weakness decreased compared to the dough without ADA. Through the amylogram, it was found that gelatinization temperature and maximum viscosity increased, but temperature of maximum viscosity reduced in the dough with ADA. The extensogram showed that the area and resistance of the dough increased slightly but extensibility decreased drastically after fermentation, resulting in the ratio of resistance and extensibility (R/E) of the dough with ADA was lower than those without ADA. The bread prepared with the dough containing ADA after freezing up to 12 weeks showed higher pH and specific loaf volume but lower moisture content, second proof time and resistance than those without ADA.

Effects of RS-3 type resistant starches on breadmaking and quality of white pan bread (RS-3형태의 저항전분 첨가가 제빵 및 빵의 품질에 미치는 영향)

  • 송지영;이신경;신말식
    • Korean journal of food and cookery science
    • /
    • v.16 no.2
    • /
    • pp.188-194
    • /
    • 2000
  • Effects of native and RS-3 type resistant starches prepared from autoclaved-cooled amylomaize VII(AVII) and normal maize starches(NMS) on the rheological and baking properties of wheat flour dough and quality of breads were investigated. In farinogram, water absorption and dough development time were increased, but stability was reduced by the addition of RS. The addition of native starches or resistant starch made from AVII to wheat flour improved the total volume and specific loaf volume of bread compared with the control(no addition), but the addition of NMS-RS reduced those. During the storage of bread at room temperature, the moisture content of control was decreased but those of native starch- or RS-added breads remained constantly. AVII-RS- or NMS-RS-added bread was evaluated to have good overall acceptability compared with control by elementary school students. The addition of enzyme-resistant starch to bread regardless of botanical sources of starch not only improved the overall acceptability and nutritional benefits but also improved the sensory acceptability.

  • PDF

Preparation and Characterization of Rice Starch Maltodextrin (쌀전분 Maltodextrin의 제조와 특성 연구)

  • Kim, Jong-Wook;Shin, Hae-Hun;Kim, Jung-Min;Kim, Young-Sook;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.819-823
    • /
    • 1994
  • For the development of rice-derived fat replacing ingredient, low dextrose equivalent (D.E.) malto dextrin was prepared by enzyme hydrolysis, and its physical and rheological properties were studied. The molecular sizes of rice maltodextrin were measured by gel permeation chromatography on Sephadex G-50. Gel permeation column chromatograms showed a large single peak, suggesting a limited hydrolysis, and the average degree of polymerization decreased from 72.8 for 3 D.E. maltodextrin to 48.7 for 6 D.E. maltodextrin. Cold water solubility of maltodextrin was increased with increasing D.E. value and its values ranged from 47.3% to 71.3%. 8% solution of rice maltodextrin showed pseudoplastic behavior. Flow behavior index was decreased as D.E. value was increased.

  • PDF

Stick-slip Characteristics of Magnetorheological Elastomer under Magnetic Fields (자기장에 따른 자기유변탄성체의 스틱 슬립 현상 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee;Choi, Jong Myoung
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • This paper investigates the stick-slip characteristic of magnetorheological elastomer (MRE) between an aluminum plate and the surface of the MRE. MRE is a smart material and it can change its mechanical behavior with the interior iron particles under the influence of an applied magnetic field. Stick-slip is a movement of two surfaces relative to each other that proceeds as a series of jerks caused by alternate sticking from friction and sliding when the friction is overcome by an applied force. This special tribology phenomenon can lead to unnecessary wear, vibration, noise, and reduced service life of work piece. The stick-slip phenomenon is avoided as far as possible in the field of mechanical engineering. As this phenomenon is a function of material property, applied load, and velocity, it can be controlled using the characteristics of MRE. MRE as a soft smart material, whose mechanical properties such as modulus and stiffness can be changed via the strength of an external magnetic field, has been widely studied as a prospective replacement for general rubber in the mechanical domain. In this study, friction force is measured under different loads, speed, and magnetic field strength. From the test results, it is confirmed that the stick-slip phenomenon can be minimized under optimum conditions and can be applied in various mechanical components.